ﻻ يوجد ملخص باللغة العربية
Bells theorem guarantees that no model based on local variables can reproduce quantum correlations. Also some models based on non-local variables, if subject to apparently reasonable constraints, may fail to reproduce quantum physics. In this paper, we introduce a family of inequalities, which allow testing Leggetts non-local model versus quantum physics, and which can be tested in an experiment without additional assumptions. Our experimental data falsify Leggetts model and are in agreement with quantum predictions.
Bells theorem states that no local hidden variable model is compatible with quantum mechanics. Surprisingly, even if we release the locality constraint, certain nonlocal hidden variable models, such as the one proposed by Leggett, may still be at var
Most working scientists hold fast to the concept of realism - a viewpoint according to which an external reality exists independent of observation. But quantum physics has shattered some of our cornerstone beliefs. According to Bells theorem, any the
We report on a new kind of experimental investigations of the tension between quantum nonlocally and relativity. Entangled photons are sent via an optical fiber network to two villages near Geneva, separated by more than 10 km where they are analyzed
In this paper we describe a test of Bell inequalities using a non- maximally entangled state, which represents an important step in the direction of eliminating the detection loophole. The experiment is based on the creation of a polarisation entangl
We experimentally show how classical correlations can be turned into quantum entanglement, via the presence of non-unital local noise and the action of a CNOT gate. We first implement a simple two-qubit protocol in which entanglement production is no