ﻻ يوجد ملخص باللغة العربية
Distance to the Large Magellanic Cloud (LMC) is determined using the Cepheid variables in the LMC. We combine the individual LMC Cepheid distances obtained from the infrared surface brightness method and a dataset with a large number of LMC Cepheids. Using the standard least squares method, the LMC distance modulus can be found from the ZP offsets of these two samples. We have adopted both a linear P-L relation and a ``broken P-L relation in our calculations. The resulting LMC distance moduli are 18.48+-0.03 mag and 18.49+-0.04 mag (random error only), respectively, which are consistent to the adopted 18.50 mag in the literature.
We have obtained deep infrared $J$ and $K$ band observations of five fields located in the Large Magellanic Cloud (LMC) bar with the ESO New Technology Telescope equipped with the SOFI infrared camera. In our fields, 65 RR Lyrae stars catalogued by t
Period-colour (PC) and amplitude-colour (AC) relations at maximum, mean and minimum light are constructed from a large grid of full amplitude hydrodynamic models of Cepheids with a composition appropriate for the SMC (Small Magellanic Cloud). We comp
The Hipparcos I-band calibration of horizontal-branch red clump giants as standard candles has lead to controversial results for the distance to the Large Magellanic Cloud (LMC). In an attempt to properly ascertain the corrections for interstellar ex
Hubble Space Telescope V,I photometry of stars in the Large Magellanic Cloud Cluster NGC 1866 shows a well defined cluster main sequence down to V=25 mag, with little contamination from field or foreground stars. We use the main sequence fitting proc
We have obtained deep infrared J and K band observations of nine 4.9x4.9 arcmin fields in the Small Magellanic Cloud (SMC) with the ESO New Technology Telescope equipped with the SOFI infrared camera. In these fields, 34 RR Lyrae stars catalogued by