ﻻ يوجد ملخص باللغة العربية
We discuss neutrino oscillations in an experiment with Mossbauer recoilless resonance absorbtion of tritium antineutrinos, proposed recently by Raghavan. We demonstrate that small energy uncertainty of antineutrinos which ensures a large resonance absorption cross section is in a conflict with the energy uncertainty which, according to the time-energy uncertainty relation, is necessary for neutrino oscillations to happen. The search for neutrino oscillations in the Mossbauer neutrino experiment would be an important test of the applicability of the time-energy uncertainty relation to a newly discovered interference phenomenon.
Basic questions concerning phononless resonant capture of monoenergetic electron antineutrinos (Mossbauer antineutrinos) emitted in bound-state beta-decay in the 3H - 3He system are discussed. It is shown that lattice expansion and contraction after
We prove the uncertainty relation $sigma_T , sigma_E geq hbar/2$ between the time $T$ of detection of a quantum particle on the surface $partial Omega$ of a region $Omegasubset mathbb{R}^3$ containing the particles initial wave function, using the ab
By collecting both quantum and gravitational principles, a space-time uncertainty relation $(delta t)(delta r)^{3}geqslantpi r^{2}l_{p}^{2}$ is derived. It can be used to facilitate the discussion of several profound questions, such as computational
To reveal the role of the quantumness in the Otto cycle and to discuss the validity of the thermodynamic uncertainty relation (TUR) in the cycle, we study the quantum Otto cycle and its classical counterpart. In particular, we calculate exactly the m
We show that the dissipation rate bounds the rate at which physical processes can be performed in stochastic systems far from equilibrium. Namely, for rare processes we prove the fundamental tradeoff $langle dot S_text{e} rangle mathcal{T} geq k_{tex