ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Field Structure in the Parsec Scale Jet of 3C273 from Multifrequency VLBA Observations

99   0   0.0 ( 0 )
 نشر من قبل Tuomas Savolainen
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Savolainen




اسأل ChatGPT حول البحث

We present first results from a multifrequency VLBA observations of 3C273 in 2003. The source was observed simultaneously at 5.0, 8.4, 15.3, 22.2, 43.2 and 86.2 GHz, and from this multifrequency data set, spectra of 16 emission features in the parsec scale jet were carefully constructed by using a new model-fitting based method. The measured spectra and sizes of the emission features were used to calculate the magnetic field density and the energy density of the relativistic electrons in the different parts of the parsec scale jet, independent of any equipartition assumption. We measure magnetic field density of an order of 1 Gauss in the core. The magnetic energy density in the core dominates over that of the relativistic electrons, while in the downstream region our data are roughly consistent with an equipartition. A strong gradient in the magnetic field density across the jet width, coincident with a transverse velocity structure at about 1.5 mas from the core, was found: the slower superluminal component B2 on the northern side of the jet has a magnetic field density two orders of magnitude lower than the faster southern components B3 and B4.



قيم البحث

اقرأ أيضاً

52 - T. Savolainen 2005
In this first of a series of papers describing polarimetric multifrequency Very Long Baseline Array (VLBA) monitoring of 3C 273 during a simultaneous campaign with the INTEGRAL gamma-ray satellite in 2003, we present 5 Stokes I images and source mode ls at 7 mm. We show that a part of the inner jet (1-2 milliarcseconds from the core) is resolved in a direction transverse to the flow, and we analyse the kinematics of the jet within the first 10 mas. Based on the VLBA data and simultaneous single-dish flux density monitoring, we determine an accurate value for the Doppler factor of the parsec scale jet, and using this value with observed proper motions, we calculate the Lorentz factors and the viewing angles for the emission components in the jet. Our data indicates a significant velocity gradient across the jet with the components travelling near the southern edge being faster than the components with more northern path. We discuss our observations in the light of jet precession model and growing plasma instabilities.
The spatially resolved broad-band spectroscopy with Very Long Baseline Interferometry (VLBI) is one of the few methods that can probe the physical conditions inside blazar jets. We report on measurements of the magnetic field strength in parsec-scale radio structures of selected bright Fermi blazars, based on fitting the synchrotron spectrum to VLBA images made at seven frequencies in a 4.6 -- 43.2 GHz range. Upper limits of B <= 10^-2 -- 10^2 G (observers frame) could be placed on the magnetic field strength in 13 sources. Hard radio spectra (-0.5 <= a <= +0.1, S_nu ~ nu^a) observed above the synchrotron peak may either be an indication of a hard energy spectrum of the emitting electron population or result from a significant inhomogeneity of the emitting region.
We report results from Chandra observations of the X-ray jet of 3C~273 during the calibration phase in 2000 January. The zeroeth-order images and spectra from two 40-ks exposures with the HETG and LETG+ACIS-S show a complex X-ray structure. The brigh test optical knots are detected and resolved in the 0.2-8 keV energy band. The X-ray morphology tracks well the optical. However, while the X-ray brightness decreases along the jet, the outer parts of the jet tend to be increasingly bright with increasing wavelength. The spectral energy distributions of four selected regions can best be explained by inverse Compton scattering of (beamed) cosmic microwave background photons. The model parameters are compatible with equipartition and a moderate Doppler factor, which is consistent with the one-sidedness of the jet. Alternative models either imply implausible physical conditions and energetics (the synchrotron self-Compton model) or are sufficiently ad hoc to be unconstrained by the present data (synchrotron radiation from a spatially or temporally distinct particle population).
Radio jets can play multiple roles in the feedback loop by regulating the accretion of the gas, by enhancing gas turbulence, and by driving gas outflows. Numerical simulations are beginning to make detailed predictions about these processes. Using hi gh resolution VLBI observations we test these predictions by studying how radio jets of different power and in different phases of evolution affect the properties and kinematics of the surrounding HI gas. Consistent with predictions, we find that young (or recently restarted) radio jets have stronger impact as shown by the presence of HI outflows. The outflowing medium is clumpy {with clouds of with sizes up to a few tens of pc and mass ~10^4 m_sun) already in the region close to the nucleus ($< 100$ pc), making the jet interact strongly and shock the surrounding gas. We present a case of a low-power jet where, as suggested by the simulations, the injection of energy may produce an increase in the turbulence of the medium instead of an outflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا