ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on Dissipative Non-Equilibrium Dark Energy Models from Recent Supernova Data

151   0   0.0 ( 0 )
 نشر من قبل Vasiliki Mitsou
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-critical string cosmologies may be viewed as the analogue of off-equilibrium models arising within string theory as a result of a cosmically catastrophic event in the early Universe. Such models entail relaxing-to-zero dark energies provided by a rolling dilaton field at late times. We discuss fits of such non-critical models to high-redshift supernovae data, including the recent ones by HST and ESSENCE and compare the results with those of a conventional model with Cold Dark Matter and a cosmological constant and a model invoking super-horizon perturbations.



قيم البحث

اقرأ أيضاً

We discuss fits of cosmological dark energy models to the available data on high-redshift supernovae. We consider a conventional model with Cold Dark Matter and a cosmological constant (LambdaCDM), a model invoking super-horizon perturbations (SHCDM) and models based on Liouville strings in which dark energy is provided by a rolling dilaton field (Q-cosmology). We show that a complete treatment of Q-cosmology requires a careful discussion of non-equilibrium situations (off-shell effects). The two main high-redshift supernova data sets give compatible constraints on LambdaCDM and the other models. We recover the well-known result that LambdaCDM fits very well the combined supernova data sets, as does the super-horizon model. We discuss the model-dependent off-shell corrections to the Q-cosmology model that are relevant to the supernova data, and show that this model fits the data equally well. This analysis could be extended to other aspects of cosmological phenomenology, in particular to the CMB and Baryon Acoustic Oscillations, which have so far been treated using on-shell models.
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the $phi$CDM model is a physically consistent one in which a scalar field $phi$ with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard $Lambda$CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-$Lambda$CDM model, with $Delta chi^2 = -1.26 (-1.60)$ for the XCDM ($phi$CDM) model relative to the $Lambda$CDM model. While this is a 1.1$sigma$ (1.3$sigma$) improvement over standard $Lambda$CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing $sigma_8$ constraints.
The gravitational-wave event GW170817, together with the electromagnetic counterpart, shows that the speed of tensor perturbations $c_T$ on the cosmological background is very close to that of light $c$ for the redshift $z<0.009$. In generalized Proc a theories, the Lagrangians compatible with the condition $c_T=c$ are constrained to be derivative interactions up to cubic order, besides those corresponding to intrinsic vector modes. We place observational constraints on a dark energy model in cubic-order generalized Proca theories with intrinsic vector modes by running the Markov chain Monte Carlo (MCMC) code. We use the cross-correlation data of the integrated Sachs-Wolfe (ISW) signal and galaxy distributions in addition to the data sets of cosmic microwave background, baryon acoustic oscillations, type Ia supernovae, local measurements of the Hubble expansion rate, and redshift-space distortions. We show that, unlike cubic-order scalar-tensor theories, the existence of intrinsic vector modes allows the possibility for evading the ISW-galaxy anticorrelation incompatible with the current observational data. As a result, we find that the dark energy model in cubic-order generalized Proca theories exhibits a better fit to the data than the cosmological constant, even by including the ISW-galaxy correlation data in the MCMC analysis.
In light of the statistical performance of cosmological observations, in this work we present an improvement on the Gaussian reconstruction of the Hubble parameter data $H(z)$ from Cosmic Chronometers, Supernovae Type Ia and Clustering Galaxies in a model-independent way in order to use them to study new constraints in the Horndeski theory of gravity. First, we have found that the prior used to calibrate the Pantheon supernovae data significantly affects the reconstructions, leading to a 13$sigma $ tension on the $H_0$ value. Second, according to the $chi^{2}$-statistics, the reconstruction carried out by the Pantheon data calibrated using the $H_{0} $ value measured by The Carnegie-Chicago Hubble Program is the reconstruction which fits best the observations of Cosmic Chronometers and Clustering of Galaxies datasets. Finally, we use our reconstructions of $H(z)$ to impose model-independent constraints in dark energy scenarios as Quintessence and K-essence from general cosmological viable Horndeski models, landscape in where we found that a Horndeski model of the K-essence type can reproduce the reconstructions of the late expansion of the universe within 2$sigma$.
We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا