ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted Gauge and Gravity Theories on the Groenewold-Moyal Plane

284   0   0.0 ( 0 )
 نشر من قبل Sachindeo Vaidya
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work [hep-th/0504183,hep-th/0508002] indicates an approach to the formulation of diffeomorphism invariant quantum field theories (qfts) on the Groenewold-Moyal (GM) plane. In this approach to the qfts, statistics gets twisted and the S-matrix in the non-gauge qfts becomes independent of the noncommutativity parameter theta^{mu u}. Here we show that the noncommutative algebra has a commutative spacetime algebra as a substructure: the Poincare, diffeomorphism and gauge groups are based on this algebra in the twisted approach as is known already from the earlier work of [hep-th/0510059]. It is natural to base covariant derivatives for gauge and gravity fields as well on this algebra. Such an approach will in particular introduce no additional gauge fields as compared to the commutative case and also enable us to treat any gauge group (and not just U(N)). Then classical gravity and gauge sectors are the same as those for theta^{mu u}=0, but their interactions with matter fields are sensitive to theta^{mu u}. We construct quantum noncommutative gauge theories (for arbitrary gauge groups) by requiring consistency of twisted statistics and gauge invariance. In a subsequent paper (whose results are summarized here), the locality and Lorentz invariance properties of the S-matrices of these theories will be analyzed, and new non-trivial effects coming from noncommutativity will be elaborated. This paper contains further developments of [hep-th/0608138] and a new formulation based on its approach.



قيم البحث

اقرأ أيضاً

Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.
Twisted quantum field theories on the Groenewold-Moyal plane are known to be non-local. Despite this non-locality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings between matter fields, or between matter fields and minimally coupled U(1) gauge fields are causal in this sense. On the other hand, interactions between matter fields and non-abelian gauge fields violate this generalized causality. We derive the modified Feynman rules emergent from these features. They imply that interactions of matter with non-abelian gauge fields are not Lorentz- and CPT-invariant.
The Moyal and Wick-Voros planes A^{M,V}_{theta} are *-isomorphic. On each of these planes the Poincare group acts as a Hopf algebra symmetry if its coproducts are deformed by twist factors. We show that the *-isomorphism T: A^M_{theta} to A^V_{theta} does not also map the corresponding twists of the Poincare group algebra. The quantum field theories on these planes with twisted Poincare-Hopf symmetries are thus inequivalent. We explicitly verify this result by showing that a non-trivial dependence on the non-commutative parameter is present for the Wick-Voros plane in a self-energy diagram whereas it is known to be absent on the Moyal plane (in the absence of gauge fields). Our results differ from these of (arXiv:0810.2095 [hep-th]) because of differences in the treatments of quantum field theories.
We discuss the possibility of a class of gauge theories, in four Euclidean dimensions, to describe gravity at quantum level. The requirement is that, at low energies, these theories can be identified with gravity as a geometrodynamical theory. Specif ically, we deal with de Sitter-type groups and show that a Riemann-Cartan first order gravity emerges. An analogy with quantum chromodynamics is also formulated. Under this analogy it is possible to associate a soft BRST breaking to a continuous deformation between both sectors of the theory, namely, ultraviolet and infrared. Moreover, instead of hadrons and glueballs, the physical observables are identified with the geometric properties of spacetime. Furthermore, Newton and cosmological constants can be determined from the dynamical content of the theory.
We show how to get a non-commutative product for functions on space-time starting from the deformation of the coproduct of the Poincare group using the Drinfeld twist. Thus it is easy to see that the commutative algebra of functions on space-time (R^ 4) can be identified as the set of functions on the Poincare group invariant under the right action of the Lorentz group provided we use the standard coproduct for the Poincare group. We obtain our results for the noncommutative Moyal plane by generalizing this result to the case of the twisted coproduct. This extension is not trivial and involves cohomological features. As is known, spacetime algebra fixes the coproduct on the dffeomorphism group of the manifold. We now see that the influence is reciprocal: they are strongly tied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا