ﻻ يوجد ملخص باللغة العربية
We study a tunnel junction consisting of two thin-film s-wave superconductors separated by a thin, insulating barrier in the presence of misaligned in-plane exchange fields. We find an interesting interplay between the superconducting phase difference and the relative orientation of the exchange fields, manifested in the Josephson current across the junction. Specifically, this may be written $I_text{J}^text{C} = (I_0+I_m ~ cosphi) sinDeltatheta$, where I_0 and I_m are constants, and $phi$ is the relative orientation of the exchange fields while $Deltatheta$ is the superconducting phase difference. Similar results have recently been obtained in other S/I/S junctions coexisting with helimagnetic or ferromagnetic order. We calculate the superconducting order parameter self-consistently, and investigate quantitatively the effect which the misaligned exchange fields constitute on the Josephson current, to see if I_m may have an appreciable effect on the Josephson current. It is found that I_0 and I_m become comparable in magnitude at sufficiently low temperatures and fields close to the critical value, in agreement with previous work. From our analytical results, it then follows that the Josephson current in the present system may be controlled in a well-defined manner by a rotation of the exchange fields on both sides of the junction. We discuss a possible experimental realization of this proposition.
We study theoretically the effects of interfacial Rashba and Dresselhaus spin-orbit coupling in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions---with allowing for tunneling barriers between the layers---by solving the Bogoljubo
Interfacial spin-orbit coupling in Josephson junctions offers an intriguing way to combine anomalous Hall and Josephson physics in a single device. We study theoretically how the superposition of both effects impacts superconductor/ferromagnetic insu
Three-dimensional topological insulators (TIs) in proximity with superconductors are expected to exhibit exotic phenomena such as topological superconductivity (TSC) and Majorana bound states (MBS), which may have applications in topological quantum
Since the discovery of superconductivity in MgB2 considerable progress has been made in determining the physical properties of the material, which are promising for bulk conductors. Tunneling studies show that the material is reasonably isotropic and
Self-consistent solutions of microscopic Eilenberger theory are presented for a two-dimensional model of a superconducting channel with a geometric constriction. Magnetic fields, external ones as well as those caused by the supercurrents, are include