ﻻ يوجد ملخص باللغة العربية
GAW is a path-finder experiment to test the feasibility of a new generation of Imaging Atmospheric Cherenkov telescopes that join high flux sensitivity with large field of view capability using Fresnel lens, stereoscopic observational approach, and single photon counting mode. GAW is an array of three telescopes that will be erected at the Calar Alto Observatory site (Spain, 2150 m a.s.l.). To evaluate the performance of GAW, a consistent data--set has been simulated, including a Crab-like source observation, and a proper image analysis code has been developed, as described in this contribution. The expected performance of GAW are also reported, mainly for what concerns effective area, angular resolution, Cherenkov flux as function of the core distance, ability in the gamma/proton separation, and sensitivity. The first telescope realization, foreseen within the end of this year, will allow to verify if the parameters used in the analysis are in agreement with the real performance of the GAW apparatus.
The Cherenkov Telescope Array (CTA) will be the next generation very-high-energy gamma-ray observatory. CTA is expected to provide substantial improvement in accuracy and sensitivity with respect to existing instruments thanks to a tenfold increase i
VERITAS is a system of four imaging Cherenkov telescopes located at the Fred Lawrence Whipple Observatory in southern Arizona. We present here results of detailed Monte Carlo simulations of the array response to extensive air showers. Cherenkov image
This paper is concerned with the performance optimisation of an stereoscopic array of imaging atmospheric Cherenkov telescopes (IACTs) as a function of their positioning on the ground. In this first work we are concerned primarily with the study of t
The Cherenkov Telescope Array (CTA) will be the next-generation observatory in the field of very-high-energy (20 GeV to 300 TeV) gamma-ray astroparticle physics. Classically, data analysis in the field maximizes sensitivity by applying quality cuts o
The MICROSCOPE mission aimed to test the Weak Equivalence Principle (WEP) to a precision of $10^{-15}$. The WEP states that two bodies fall at the same rate on a gravitational field independently of their mass or composition. In MICROSCOPE, two masse