ﻻ يوجد ملخص باللغة العربية
The vibrational modes of some single wall carbon nanotube (SWNT) intramolecular junctions (IMJs) have been calculated using the newest Brenner reactive empirical bond order (REBO) potential, based upon which their nonresonant Raman spectra have been further calculated using the empirical bond polarizability model. It is found that the Raman peaks induced by pentagon defects lie out of the $G$-band of the SWNTs, so the high-frequency part of the Raman spectra of the SWNT IMJs can be used to determine experimentally their detailed geometrical structures. Also, the intensity of the Raman spectra has a close relation with the number of pentagon defects in the SWNT IMJs. Following the Descartes-Euler Polyhedral Formula (DEPF), the number of heptagon defects in the SWNT IMJs can also be determined. The first-principle calculations are also performed, verifying the results obtained by the REBO potential. The $G$ band width of the SWNT IMJ can reflect the length of its transition region between the pentagon and heptagon rings.
Recently, it was suggested that the polarization dependence of light absorption to a single-walled carbon nanotube is altered by carrier doping. We specify theoretically the doping level at which the polarization anisotropy is reversed by plasmon exc
Bulk boundary correspondence in topological materials allows to study their bulk topology through the investigation of their topological boundary modes. However, for classes that share similar boundary phenomenology, the growing diversity of topologi
While decreasing the oxide thickness in carbon nanotube field-effect transistors (CNFETs) improves the turn-on behavior, we demonstrate that this also requires scaling the range of the drain voltage. This scaling is needed to avoid an exponential inc
With the empirical bond polarizability model, the nonresonant Raman spectra of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial and torsional strains have been systematically studied by textit{ab initio} method. It is found
A simple scalable scheme is reported for fabricating suspended carbon nanotube field effect transistors (CNT-FETs) without exposing pristine as-grown carbon nanotubes to subsequent chemical processing. Versatility and ease of the technique is demonst