ﻻ يوجد ملخص باللغة العربية
A Lissajous knot is one that can be parameterized by a single cosine function in each coordinate. Lissajous knots are highly symmetric, and for this reason, not all knots are Lissajous. We prove several theorems which allow us to place bounds on the number of Lissajous knot types with given frequencies and to efficiently sample all possible Lissajous knots with a given set of frequencies. In particular, we systematically tabulate all Lissajous knots with small frequencies and as a result substantially enlarge the tables of known Lissajous knots. A Fourier (i, j, k) knot is similar to a Lissajous knot except that each coordinate is now described by a finite sum of i, j, and k cosine functions respectively. According to Lamm, every knot is a Fourier-(1,1,k) knot for some k. By randomly searching the set of Fourier-(1,1,2) knots we find that all 2-bridge knots up to 14 crossings are either Lissajous or Fourier-(1,1,2) knots. We show that all twist knots are Fourier-(1,1,2) knots and give evidence suggesting that all torus knots are Fourier-(1,1,2) knots. As a result of our computer search, several knots with relatively small crossing numbers are identified as potential counterexamples to interesting conjectures.
We classify 3-braids arising from collision-free choreographic motions of 3 bodies on Lissajous plane curves, and present a parametrization in terms of levels and (Christoffel) slopes. Each of these Lissajous 3-braids represents a pseudo-Anosov mappi
We construct infinitely many families of Lorenz knots that are satellites but not cables, giving counterexamples to a conjecture attributed to Morton. We amend the conjecture to state that Lorenz knots that are satellite have companion a Lorenz knot,
A Chebyshev knot is a knot which admits a parametrization of the form $ x(t)=T_a(t); y(t)=T_b(t) ; z(t)= T_c(t + phi), $ where $a,b,c$ are pairwise coprime, $T_n(t)$ is the Chebyshev polynomial of degree $n,$ and $phi in RR .$ Chebyshev knots are n
The harmonic knot $H(a,b,c)$ is parametrized as $K(t)= (T_a(t) ,T_b (t), T_c (t))$ where $a$, $b$ and $c$ are pairwise coprime integers and $T_n$ is the degree $n$ Chebyshev polynomial of the first kind. We classify the harmonic knots $H(a,b,c)$ for
We define Floer homology theories for oriented, singular knots in S^3 and show that one of these theories can be defined combinatorially for planar singular knots.