ﻻ يوجد ملخص باللغة العربية
We present a brief review of the cohomological solutions of self-coupling interactions of the fields in the free Yang-Mills theory. All consistent interactions among the fields have been obtained using the antifield formalism through several order BRST deformations of the master equation. It is found that the coupling deformations halt exclusively at the second order, whereas higher order deformations are obstructed due to non-local interactions. The results demonstrate the BRST cohomological derivation of the interacting Yang-Mills theory.
In the present paper the Yang-Mills theory in the first order formalism is studied. On classical level the first order formulation is equivalent to the standard second order description of the Yang-Mills theory. It is proven that both formulations remain equivalent on quantum level as well.
In this paper we recover the non-perturbative partition function of 2D~Yang-Mills theory from the perturbative path integral. To achieve this goal, we study the perturbative path integral quantization for 2D~Yang-Mills theory on surfaces with boundar
Studying the gauge-invariant renormalizability of four-dimensional Yang-Mills theory using the background field method and the BV-formalism, we derive a classical master-equation homogeneous with respect to the antibracket by introducing antifield pa
The propagation of field disturbances is examined in the context of the effective Yang-Mills Lagrangian, which is intended to be applied to QCD systems. It is shown that birefringence phenomena can occur in such systems provided some restrictive cond
We consider the problem of covariant gauge-fixing in the most general setting of the field-antifield formalism, where the action W and the gauge-fixing part X enter symmetrically and both satisfy the Quantum Master Equation. Analogous to the gauge-ge