ﻻ يوجد ملخص باللغة العربية
We study observed correlations between supermassive black hole (BHs) and the properties of their host galaxies, and show that the observations define a BH fundamental plane (BHFP), of the form M_BH sigma^(3.0+-0.3)*R_e^(0.43+-0.19), or M_BH M_bulge^(0.54+-0.17)*sigma^(2.2+-0.5), analogous to the FP of elliptical galaxies. The BHFP is preferred over a simple relation between M_BH and any of sigma, M_bulge, M_dyn, or R_e alone at >99.9% significance. The existence of this BHFP has important implications for the formation of supermassive BHs and the masses of the very largest black holes, and immediately resolves several apparent conflicts between the BH masses expected and measured for outliers in both the M_BH-sigma and M_BH-M_bulge relations.
The possibility that the masses of supermassive black holes (SBHs) correlate with the total gravitational mass of their host galaxy, or the mass of the dark matter halo in which they presumably formed, is investigated using a sample of 16 spiral and
Supermassive black holes have generally been recognized as the most destructive force in nature. But in recent years, they have undergone a dramatic shift in paradigm. These objects may have been critical to the formation of structure in the early un
We investigate the correlations between the black hole mass $M_{BH}$, the velocity dispersion $sigma$, the bulge mass $M_{Bu}$, the bulge average spherical density $rho_h$ and its spherical half mass radius $r_h$, constructing a database of 97 galaxi
We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the fundamental plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models