ﻻ يوجد ملخص باللغة العربية
Effective low energy models arising in the context of D-brane configurations with Standard Model (SM) gauge symmetry extended by several gauged abelian factors are discussed. The models are classified according to their hypercharge embeddings consistent with the SM spectrum hypercharge assignment. Particular cases are analyzed according to their perspectives and viability as low energy effective field theory candidates. The resulting string scale is determined by means of a two-loop renormalization group calculation. Their implications in Yukawa couplings, neutrinos and flavor changing processes are also presented.
The minimal embedding of the Standard Model in type I string theory is described. The SU(3) color and SU(2) weak interactions arise from two different collections of branes. The correct prediction of the weak angle is obtained for a string scale of 6
In this talk we will describe the problems that one encounters when one tries to connect string theory with particle phenomenology. Then, in order to have chiral matter describing quarks and leptons, we introduce the magnetized D branes. Finally, as
We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study gauge coupling constants o
We follow the example of Cabibbo by revising the Standard Model (SM) to present a universal mass structure for fermions. A universal Higgs coupling for each species of fundamental fermions moves the SM towards a Theory of Matter, albeit without corre
It has recently been shown that a subdominant hidden sector of atomic dark matter in the early universe can resolve the Hubble tension while maintaining good agreement with most precision cosmological observables. However, such a solution requires a