ﻻ يوجد ملخص باللغة العربية
We investigated domain nucleation process in epitaxial Pb(Zr,Ti)O3 capacitors under a modified piezoresponse force microscope. We obtained domain evolution images during polarization switching process and observed that domain nucleation occurs at particular sites. This inhomogeneous nucleation process should play an important role in an early stage of switching and under a high electric field. We found that the number of nuclei is linearly proportional to log(switching time), suggesting a broad distribution of activation energies for nucleation. The nucleation sites for a positive bias differ from those for a negative bias, indicating that most nucleation sites are located at ferroelectric/electrode interfaces.
We investigated the time-dependent domain wall motion of epitaxial PbZr0.2Ti0.8O3 capacitors 100 nm-thick using modified piezoresponse force microscopy (PFM). We obtained successive domain evolution images reliably by combining the PFM with switching
Heterostructures consisting of PbZr0.2Ti0.8O3 and PbZr0.4Ti0.6O3 films grown on a SrTiO3 (100) substrate with a SrRuO3 bottom electrode were prepared by pulsed laser deposition. Using the additional interface provided by the ferroelectric bilayer str
Among the recent discoveries of domain wall functionalities, the observation of electrical conduction at ferroelectric domain walls in the multiferroic insulator BiFeO3 has opened exciting new possibilities. Here, we report evidence of electrical con
Single crystals of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) poled along [001] were investigated by dielectric, x-ray, and polarized light (PLM) and piezo-force microscopy (PFM) methods. PLM revealed {100} macro-domain plates that formed
Ferroelectric switching and nanoscale domain dynamics were investigated using atomic force microscopy on monocrystalline Pb(Zr0.2Ti0.8)O3 thin films. Measurements of domain size versus writing time reveal a two-step domain growth mechanism, in which