ترغب بنشر مسار تعليمي؟ اضغط هنا

On the location of the surface-attached globule phase in collapsing polymers

109   0   0.0 ( 0 )
 نشر من قبل Thomas Prellberg
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the existence and location of the surface phase known as the Surface-Attached Globule (SAG) conjectured previously to exist in lattice models of three-dimensional polymers when they are attached to a wall that has a short range potential. The bulk phase, where the attractive intra-polymer interactions are strong enough to cause a collapse of the polymer into a liquid-like globule and the wall either has weak attractive or repulsive interactions, is usually denoted Desorbed-Collapsed or DC. Recently this DC phase was conjectured to harbour two surface phases separated by a boundary where the bulk free energy is analytic while the surface free energy is singular. The surface phase for more attractive values of the wall interaction is the SAG phase. We discuss more fully the properties of this proposed surface phase and provide Monte Carlo evidence for self-avoiding walks up to length 256 that this surface phase most likely does exist. Importantly, we discuss alternatives for the surface phase boundary. In particular, we conclude that this boundary may lie along the zero wall interaction line and the bulk phase boundaries rather than any new phase boundary curve.



قيم البحث

اقرأ أيضاً

134 - S. Das , N. Kennedy , 2020
We perform numerical simulations of an active fully flexible self-avoiding polymer as a function of the quality of the embedding solvent described in terms of an effective monomer-monomer interaction. Specifically, by extracting the Flory exponent of the active polymer under different conditions, we are able to pin down the location of the coil-globule transition for different strength of the active forces. Remarkably, we find that a simple rescaling of the temperature is capable of qualitatively capture the dependence of the $Theta$-point of the polymer with the amplitude of the active fluctuations. We discuss the limits of this mapping, and suggest that a negative active pressure between the monomers, not unlike the one that has already been found in suspensions of active hard spheres, may also be present in active polymers.
134 - Chiu Fan Lee 2008
We consider a free energy functional on the monomer density function that is suitable for the study of coil-globule transition. We demonstrate, with explicitly stated assumptions, why the entropic contribution is in the form of the Kullback-Leibler d istance, and that the energy contribution is given by two-body and three-body terms. We then solve for the free energy analytically on a set of trial density functions, and reproduce de Gennes classical theory on polymer coil-globule transition. We then discuss how our formalism can be applied to study polymer dynamics from the perspective of dynamical density function theory.
We report Monte Carlo simulations of the self-assembly of supramolecular polymers based on a model of patchy particles. We find a first-order phase transition, characterized by hysteresis and nucleation, toward a solid bundle of polymers, of length m uch greater than the average gas phase length. We argue that the bundling transition is the supramolecular equivalent of the sublimation transition, that results from a weak chain-chain interaction. We provide a qualitative equation of state that gives physical insight beyond the specific values of the parameters used in our simulations.
We study the dynamics and conformation of polymers composed by active monomers. By means of Brownian dynamics simulations we show that when the direction of the self-propulsion of each monomer is aligned with the backbone, the polymer undergoes a coi l-to-globule-like transition, highlighted by a marked change of the scaling exponent of the gyration radius. Concurrently, the diffusion coefficient of the center of mass of the polymer becomes essentially independent of the polymer size for sufficiently long polymers or large magnitudes of the self-propulsion. These effects are reduced when the self-propulsion of the monomers is not bound to be tangent to the backbone of the polymer. Our results, rationalized by a minimal stochastic model, open new routes for activity-controlled polymer and, possibly, for a new generation of polymer-based drug carriers.
We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse star (species A) and linear (species B) polymers with a third monomeric species C, which may represent free volume. The mixture is next to a hard, infinite pla te whose interactions with A and C can be attractive, repulsive, or neutral. These two interactions are the only parameters necessary to specify the effect of the surface on all three components. We numerically study monomer density profiles using the method of Gujrati and Chhajer that has already been previously applied to study polydisperse and monodisperse linear-linear blends next to surfaces. The resulting density profiles always show an enrichment of linear polymers in the immediate vicinity of the surface, due to entropic repulsion of the star core. However, the integrated surface excess of star monomers is sometimes positive, indicating an overall enrichment of stars. This excess increases with the number of star arms only up to a certain critical number and decreases thereafter. The critical arm number increases with compressibility (bulk concentration of C). The method of Gujrati and Chhajer is computationally ultrafast and can be carried out on a PC, even in the incompressible case, when simulations are unfeasible. Calculations of density profiles usually take less than 20 minutes on PCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا