ﻻ يوجد ملخص باللغة العربية
Dynamical quasiparticle properties are determined from lattice QCD along the line of the Peshier model for the running strong coupling constant in case of three light flavors. By separating time-like and space-like quantities in the number density and energy density the effective degrees of freedom in the gluon and quark sector may be specified from the time-like densities. The space-like parts of the energy densities are identified with interaction energy (or potential energy) densities. By using the time-like parton densities (or scalar densities) as independent degrees of freedom variations of the potential energy densities with respect to the time-like gluon and/or fermion densities lead to effective mean-fields for time-like gluons and quarks as well as to effective gluon-gluon, quark-gluon and quark-quark (quark-antiquark) interactions. The latter dynamical quantities are found to be approximately independent on the quark chemical potential and thus well suited for an inplementation in off-shell parton transport approaches. Results from the dynamical quasiparticle model (DQPM) in case of two dynamical light quark flavors are compared to lattice QCD calculations for the net quark density as well as for the back-to-back differential dilepton production rate by $q-{bar q}$ annihilation. The DQPM is found to pass the independent tests.
The hadronization of an expanding partonic fireball is studied within the Parton-Hadron-Strings Dynamics (PHSD) approach which is based on a dynamical quasiparticle model (DQPM) matched to reproduce lattice QCD results in thermodynamic equilibrium. A
We study if commonly used nucleon-nucleon effective interactions, obtained from fitting the properties of cold nuclear matter and of finite nuclei, can properly describe the hot dense nuclear matter produced in intermediate-energy heavy-ion collision
We perform a quantitative study of the microscopic effective shell-model interactions in the valence sd shell, obtained from modern nucleon-nucleon potentials, chiral N3LO, JISP16 and Daejeon16, using No-Core Shell-Model wave functions and the Okubo-
This review aims at a critical discussion of the interplay between effective interactions derived from various many-body approaches and spectroscopic data extracted from large scale shell-model studies. To achieve this, our many-body scheme starts wi
Starting from general expressions of well-chosen symmetric nuclear matter quantities derived for both zero- and finite-range effective theories, we derive the contributions to the effective mass. We first show that, independently of the range, the tw