ﻻ يوجد ملخص باللغة العربية
This work aims at optimizing injection networks, which consist in adding a set of long-range links (called bypass links) in mobile multi-hop ad hoc networks so as to improve connectivity and overcome network partitioning. To this end, we rely on small-world network properties, that comprise a high clustering coefficient and a low characteristic path length. We investigate the use of two genetic algorithms (generational and steady-state) to optimize three instances of this topology control problem and present results that show initial evidence of their capacity to solve it.
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years because of the rapid proliferation of wireless devices. MANETs are highly vulnerable to attacks due to the open medium, dynamically changing network topo
We present a novel Auxiliary Truth enhanced Genetic Algorithm (GA) that uses logical or mathematical constraints as a means of data augmentation as well as to compute loss (in conjunction with the traditional MSE), with the aim of increasing both dat
This study analyzes performance of several genetic and evolutionary algorithms on randomly generated NK fitness landscapes with various values of n and k. A large number of NK problem instances are first generated for each n and k, and the global opt
In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network for the communication needs of the moment. These networks require the implementation of a medium access control (MAC) layer. We consider MAC protocols for Dy
Multitasking optimization is an incipient research area which is lately gaining a notable research momentum. Unlike traditional optimization paradigm that focuses on solving a single task at a time, multitasking addresses how multiple optimization pr