ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpreting the results of searches for gravitational waves from coalescing binaries

154   0   0.0 ( 0 )
 نشر من قبل Stephen Fairhurst
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a method based on the loudest event statistic to calculate an upper limit or interval on the astrophysical rate of binary coalescence. The calculation depends upon the sensitivity and noise background of the detectors, and a model for the astrophysical distribution of coalescing binaries. There are significant uncertainties in the calculation of the rate due to both astrophysical and instrumental uncertainties as well as errors introduced by using the post--Newtonian waveform to approximate the full signal. We catalog these uncertainties in detail and describe a method for marginalizing over them. Throughout, we provide an example based on the initial LIGO detectors.



قيم البحث

اقرأ أيضاً

Inspiralling compact binaries are expected to circularize before their gravitational-wave signals reach the sensitive frequency band of ground-based detectors. Current searches for gravitational waves from compact binaries using the LIGO and Virgo de tectors therefore use circular templates to construct matched filters. Binary formation models have been proposed which suggest that some systems detectable by the LIGO--Virgo network may have non-negligible eccentricity. We investigate the ability of the restricted 3.5 post-Newtonian order TaylorF2 template bank, used by LIGO and Virgo to search for gravitational waves from compact binaries with masses $M le 35 M_odot$, to detect binaries with non-zero eccentricity. We model the gravitational waves from eccentric binaries using the $x$-model post-Newtonian formalism proposed by Hinder emph{et. al.} [I. Hinder, F. Hermann, P. Laguna, and D. Shoemaker, arXiv:0806.1037v1]. We find that small residual eccentricities ($e_0 lesssim 0.05$ at 40 Hz) do not significantly affect the ability of current LIGO searches to detect gravitational waves from coalescing compact binaries with total mass $2 M_odot < M < 15 M_odot$. For eccentricities $e_0 gtrsim 0.1$, the loss in matched filter signal-to-noise ratio due to eccentricity can be significant and so templates which include eccentric effects will be required to perform optimal searches for such systems.
The detection of gravitational waves from coalescing compact binaries would be a computationally intensive process if a single bank of template wave forms (i.e., a one step search) is used. In an earlier paper we had presented a detection strategy, c alled a two step search}, that utilizes a hierarchy of template banks. It was shown that in the simple case of a family of Newtonian signals, an on-line two step search was about 8 times faster than an on-line one step search (for initial LIGO). In this paper we extend the two step search to the more realistic case of zero spin 1.5 post-Newtonian wave forms. We also present formulas for detection and false alarm probabilities which take statistical correlations into account. We find that for the case of a 1.5 post-Newtonian family of templates and signals, an on-line two step search requires about 1/21 the computing power that would be required for the corresponding on-line one step search. This reduction is achieved when signals having strength S = 10.34 are required to be detected with a probability of 0.95, at an average of one false event per year, and the noise power spectral density used is that of advanced LIGO. For initial LIGO, the reduction achieved in computing power is about 1/27 for S = 9.98 and the same probabilities for detection and false alarm as above.
The Advanced LIGO and Virgo gravitational wave observatories have opened a new window with which to study the inspiral and mergers of binary compact objects. These observations are most powerful when coordinated with multi-messenger observations. Thi s was underlined by the first observation of a binary neutron star merger GW170817, coincident with a short Gamma-ray burst, GRB170817A, and the identification of the host galaxy NGC~4993 from the optical counterpart AT~2017gfo. Finding the fast-fading optical counterpart critically depends on the rapid production of a sky-map based on LIGO/Virgo data. Currently, a rapid initial sky map is produced followed by a more accurate, high-latency, $gtrsimSI{12}{hr}$ sky map. We study optimization choices of the Bayesian prior and signal model which can be used alongside other approaches such as reduced order quadrature. We find these yield up to a $60%$ reduction in the time required to produce the high-latency localisation for binary neutron star mergers.
79 - Keith Riles 2017
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst and a kilonova , reinforces the excitement of this new era, in which we may soon see other sources of gravitational waves, including continuous, nearly monochromatic signals. Potential continuous wave (CW) sources include rapidly spinning galactic neutron stars and more exotic possibilities, such as emission from axion Bose Einstein clouds surrounding black holes. Recent searches in Advanced LIGO data are presented, and prospects for more sensitive future searches discussed.
To date, close to fifty presumed black hole binary mergers were observed by the LIGO and Virgo detectors. The analyses have been done with an assumption that these objects are black holes by limiting the spin prior to the Kerr bound. However, the abo ve assumption is not valid for superspinars, which have the Kerr geometry but rotate beyond the Kerr bound. In this study, we investigate whether and how the limited spin prior range causes a bias in parameter estimation for superspinars if they are detected. To this end, we estimate binary parameters of the simulated inspiral signals of the gravitational waves of compact binaries by assuming that at least one component of them is a superspinar. We have found that when the primary is a superspinar, both mass and spin parameters are biased in parameter estimation due to the limited spin prior range. In this case, the extended prior range is strongly favored compared to the limited one. On the other hand, when the primary is a black hole, we do not see much bias in parameter estimation due to the limited spin prior range, even though the secondary is a superspinar. We also apply the analysis to black hole binary merger events GW170608 and GW190814, which have a long and loud inspiral signal. We do not see any preference of superspinars from the model selection for both events. We conclude that the extension of the spin prior range is necessary for accurate parameter estimation if highly spinning primary objects are found, while it is difficult to identify superspinars if they are only the secondary objects. Nevertheless, the bias in parameter estimation of spin for the limited spin prior range can be a clue of the existence of superspinars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا