ﻻ يوجد ملخص باللغة العربية
We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for a Tully-Fisher study. For small galaxies (disc scale length ~2 kpc) even strong distortions are not visible in the velocity field at z~0.5 with currently available angular resolution. Therefore we conclude that current distant Tully-Fisher studies cannot give reliable results for low-mass systems. Additionally to these studies we confirm the power of near-infrared integral field spectrometers in combination with adaptive optics (such as SINFONI) to study velocity fields of galaxies at high redshift (z~2).
We study the relation between stellar ages and vertical velocity dispersion (the age-velocity relation, or AVR) in a sample of seven simulated disc galaxies. In our simulations, the shape of the AVR for stars younger than 9 Gyr depends strongly on th
We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First we compare stars that are born inside the galaxy with those that are born outside the galaxy and are
Using 22 hydrodynamical simulated galaxies in a LCDM cosmological context we recover not only the observed baryonic Tully-Fisher relation, but also the observed mass discrepancy--acceleration relation, which reflects the distribution of the main comp
We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves
We study how feedback influences baryon infall onto galaxies using cosmological, zoom-in simulations of haloes with present mass $M_{vir}=6.9times10^{11} M_{odot}$ to $1.7times10^{12} M_{odot}$. Starting at z=4 from identical initial conditions, impl