ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b

143   0   0.0 ( 0 )
 نشر من قبل Michael Gillon
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Gillon




اسأل ChatGPT حول البحث

We present Spitzer Space Telescope infrared photometry of a primary transit of the hot Neptune GJ 436b. The observations were obtained using the 8 microns band of the InfraRed Array Camera (IRAC). The high accuracy of the transit data and the weak limb-darkening in the 8 microns IRAC band allow us to derive (assuming M = 0.44 +- 0.04 Msun for the primary) a precise value for the planetary radius (4.19 +0.21-0.16 Rearth), the stellar radius (0.463 +0.022-0.017 Rsun), the orbital inclination (85.90 +0.19-0.18 degrees) and transit timing (2454280.78186 +0.00015-0.00008 HJD). Assuming current planet models, an internal structure similar to that of Neptune with a small H/He envelope is necessary to account for the measured radius of GJ 436b.



قيم البحث

اقرأ أيضاً

We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ436b. The observations were obtained using the 8-micron band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary ecl ipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of 0.58 mmag allows us to estimate a blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional new spectroscopic and photometric observations allow us to estimate the rotational period of the star and to assess the potential presence of another planet.
GJ 436b is a warm-- approximately 800 K--extrasolar planet that periodically eclipses its low-mass (half the mass of the Sun) host star, and is one of the few Neptune-mass planets that is amenable to detailed characterization. Previous observations h ave indicated that its atmosphere has a methane-to-CO ratio that is 100,000 times smaller than predicted by models for hydrogen-dominated atmospheres at these temperatures. A recent study proposed that this unusual chemistry could be explained if the planets atmosphere is significantly enhanced in elements heavier than H and He. In this study we present complementary observations of GJ 436bs atmosphere obtained during transit. Our observations indicate that the planets transmission spectrum is effectively featureless, ruling out cloud-free, hydrogen-dominated atmosphere models with an extremely high significance of 48 sigma. The measured spectrum is consistent with either a high cloud or haze layer located at a pressure of approximately 1 mbar or with a relatively hydrogen-poor (three percent hydrogen and helium mass fraction) atmospheric composition.
We report the results of infrared (8 micron) transit and secondary eclipse photometry of the hot Neptune exoplanet, GJ436b using Spitzer. The nearly photon-limited precision of these data allow us to measure an improved radius for the planet, and to detect the secondary eclipse. The transit (centered at HJD = 2454280.78149 +/-0.00016) shows the flat-bottomed shape typical of infrared transits, and it precisely defines the planet-to-star radius ratio (0.0839 +/-0.0005), independent of the stellar properties. However, we obtain the planetary radius, as well as the stellar mass and radius, by fitting to the transit curve simultaneously with an empirical mass-radius relation for M-dwarfs (M=R). We find Rs=Ms=0.47 +/-0.02 in solar units, and Rp=27,600 +/-1170 km (4.33 +/-0.18 Earth radii). This radius significantly exceeds the radius of a naked ocean planet, and requires a gasesous hydrogen-helium envelope. The secondary eclipse occurs at phase 0.587 +/-0.005, proving a significant orbital eccentricity (e=0.15 +/-0.012). The amplitude of the eclipse (5.7 +/-0.8e-4) indicates a brightness temperature for the planet of T=712 +/-36K. If this is indicative of the planets physical temperature, it suggests the occurrence of tidal heating in the planet. An uncharacterized second planet likely provides ongoing gravitational perturbations, to maintain GJ436bs orbit eccentricity over long time scales.
Neptune-sized extrasolar planets that orbit relatively close to their host stars -- often called hot Neptunes -- are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accreti on of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000x solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H2-dominated atmospheres to more Venus-like, CO2-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find that the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H2O, CO, CO2, and even O2-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH4-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.
130 - M. Gillon 2007
This Letter reports on the photometric detection of transits of the Neptune-mass planet orbiting the nearby M-dwarf star GJ 436. It is by far the closest, smallest and least massive transiting planet detected so far. Its mass is slightly larger than Neptunes at M = 22.6 +- 1.9 M_earth. The shape and depth of the transit lightcurves show that it is crossing the host star disc near its limb (impact parameter 0.84 +- 0.03) and that the planet size is comparable to that of Uranus and Neptune, R = 25200 +- 2200 km = 3.95 +- 0.35 R_earth. Its main constituant is therefore very likely to be water ice. If the current planet structure models are correct, an outer layer of H/He constituting up to ten percent in mass is probably needed on top of the ice to account for the observed radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا