ترغب بنشر مسار تعليمي؟ اضغط هنا

First Results from the DRIFT-IIa Dark Matter Detector

459   0   0.0 ( 0 )
 نشر من قبل Neil Spooner
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Data from the DRIFT-IIa directional dark matter experiment are presented, collected during a near continuous 6 month running period. A detailed calibration analysis comparing data from gamma-ray, x-ray and neutron sources to a GEANT4 Monte Carlo simulations reveals an efficiency for detection of neutron induced recoils of 94+/-2(stat.)+/-5(sys.)%. Software-based cuts, designed to remove non-nuclear recoil events, are shown to reject 60Co gamma-rays with a rejection factor of better than 8x10-6 for all energies above threshold. An unexpected event population has been discovered and is shown here to be due to the alpha-decay of 222Rn daughter nuclei that have attached to the central cathode. A limit on the flux of neutrons in the Boulby Underground Laboratory is derived from analysis of unshielded and shielded data.



قيم البحث

اقرأ أيضاً

The addition of O2 to gas mixtures in time projection chambers containing CS2 has recently been shown to produce multiple negative ions that travel at slightly different velocities. This allows a measurement of the absolute position of ionising event s in the z (drift) direction. In this work, we apply the z-fiducialisation technique to a directional dark matter search. In particular, we present results from a 46.3 live-day source-free exposure of the DRIFT-IId detector run in this completely new mode. With full-volume fiducialisation, we have achieved the first background-free operation of a directional detector. The resulting exclusion curve for spin-dependent WIMP-proton interactions reaches 1.1 pb at 100 GeV/c2, a factor of 2 better than our previous work. We describe the automated analysis used here, and argue that detector upgrades, implemented after the acquisition of these data, will bring an additional factor of >3 improvement in the near future.
The Dark Matter Time Projection Chamber (DMTPC) is a low pressure (75 Torr CF4) 10 liter detector capable of measuring the vector direction of nuclear recoils with the goal of directional dark matter detection. In this paper we present the first dark matter limit from DMTPC. In an analysis window of 80-200 keV recoil energy, based on a 35.7 g-day exposure, we set a 90% C.L. upper limit on the spin-dependent WIMP-proton cross section of 2.0 x 10^{-33} cm^{2} for 115 GeV/c^2 dark matter particle mass.
We present results from a 54.7 live-day shielded run of the DRIFT-IId detector, the worlds most sensitive, directional, dark matter detector. Several improvements were made relative to our previous work including a lower threshold for detection, a mo re robust analysis and a tenfold improvement in our gamma rejection factor. After analysis, no events remain in our fiducial region leading to an exclusion curve for spin-dependent WIMP-proton interactions which reaches 0.28 pb at 100 GeV/c^2 a fourfold improvement on our previous work. We also present results from a 45.4 live-day unshielded run of the DRIFT-IId detector during which 14 nuclear recoil-like events were observed. We demonstrate that the observed nuclear recoil rate of 0.31+/-0.08 events per day is consistent with detection of ambient, fast neutrons emanating from the walls of the Boulby Underground Science Facility.
Many experiments that aim at the direct detection of Dark Matter are able to distinguish a dominant background from the expected feeble signals, based on some measured discrimination parameter. We develop a statistical model for such experiments usin g the Profile Likelihood ratio as a test statistic in a frequentist approach. We take data from calibrations as control measurements for signal and background, and the method allows the inclusion of data from Monte Carlo simulations. Systematic detector uncertainties, such as uncertainties in the energy scale, as well as astrophysical uncertainties, are included in the model. The statistical model can be used to either set an exclusion limit or to make a discovery claim, and the results are derived with a proper treatment of statistical and systematic uncertainties. We apply the model to the first data release of the XENON100 experiment, which allows to extract additional information from the data, and place stronger limits on the spin-independent elastic WIMP-nucleon scattering cross-section. In particular, we derive a single limit, including all relevant systematic uncertainties, with a minimum of 2.4x10^-44 cm^2 for WIMPs with a mass of 50 GeV/c^2.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا