ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherence of an optically illuminated single nuclear spin qubit

123   0   0.0 ( 0 )
 نشر من قبل Liang Jiang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt et al., Science, 316, 1312 (2007)] when a proximal electronic spin associated with a nitrogen-vacancy (NV) center is being interrogated by optical radiation. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment.



قيم البحث

اقرأ أيضاً

Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and d ecoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. We first use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times.
We investigate the single qubit transformations under several typical coherence-free operations, such as, incoherent operation (IO), strictly incoherent operation (SIO), physically incoherent operation (PIO), and coherence preserving operation (CPO). Quantitative connection has been built between IO and SIO in single qubit systems. Moreover, these coherence-free operations have a clear hierarchical relationship in single qubit systems: CPO $subset$ PIO $subset$ SIO=IO. A new and explicit proof for the necessary and sufficient condition of single qubit transformation via IO or SIO has been provided, which indicates that SIO with only two Kraus operators are enough to realize this transformation. The transformation regions of single qubits via CPO and PIO are also given. Our method provides a geometric illustration to analyze single qubit coherence transformations by introducing the Bloch sphere depiction of the transformation regions, and tells us how to construct the corresponding coherence-free operations.
The dynamics of single electron and nuclear spins in a diamond lattice with different 13C nuclear spin concentration is investigated. It is shown that coherent control of up to three individual nuclei in a dense nuclear spin cluster is feasible. The free induction decays of nuclear spin Bell states and single nuclear coherences among 13C nuclear spins are compared and analyzed. Reduction of a free induction decay time T2* and a coherence time T2 upon increase of nuclear spin concentration has been found. For diamond material with depleted concentration of nuclear spin, T2* as long as 30 microseconds and T2 of up to 1.8 ms for the electron spin has been observed. The 13C concentration dependence of T2* is explained by Fermi contact and dipolar interactions with nuclei in the lattice. It has been found that T2 decreases approximately as 1/n, where n is 13C concentration, as expected for an electron spin interacting with a nuclear spin bath.
Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a Nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.
Realizing a long coherence time quantum memory is a major challenge of current quantum technology. Here, we report a single Yb ion-qubit memory with over one hour coherence time, an order of improvement compared to the state-of-the-art record. The lo ng coherence time memory is realized by addressing various technical challenges such as ambient magnetic-field noise, phase noise and leakage of the microwave oscillator. Moreover, systematically study the decoherence process of our quantum memory by quantum process tomography, which enables to apply the strict criteria of quantum coherence, relative entropy of coherence. We also benchmark our quantum memory by its ability in preserving quantum information, i.e., the robustness of quantum memory, which clearly shows that over 6000 s, our quantum memory preserves non-classical quantum information. Our results verify the stability of the quantum memory in hours level and indicate its versatile applicability in various scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا