ﻻ يوجد ملخص باللغة العربية
A 3D pendulum consists of a rigid body, supported at a fixed pivot, with three rotational degrees of freedom. The pendulum is acted on by a gravitational force. Symmetry assumptions are shown to lead to the planar 1D pendulum and to the spherical 2D pendulum models as special cases. The case where the rigid body is asymmetric and the center of mass is distinct from the pivot location leads to the 3D pendulum. Full and reduced 3D pendulum models are introduced and used to study important features of the nonlinear dynamics: conserved quantities, equilibria, invariant manifolds, local dynamics near equilibria and invariant manifolds, and the presence of chaotic motions. These results demonstrate the rich and complex dynamics of the 3D pendulum.
The pendulum, in the presence of linear dissipation and a constant torque, is a non-integrable, nonlinear differential equation. In this paper, using the idea of rotated vector fields, derives the relation between the applied force $beta$ and the per
We investigate the nonlinear effect of a pendulum with the upper end fixed to an elastic rod which is only allowed to vibrate horizontally. The pendulum will start rotating and trace a delicate stationary pattern when released without initial angular
We provide an exact infinite power series solution that describes the trajectory of a nonlinear simple pendulum undergoing librating and rotating motion for all time. Although the series coefficients were previously given in [V. Fairen, V. Lopez, and
In the present paper, the nonlinear differential equation of pendulum is investigated to find an exact closed form solution, satisfying governing equation as well as initial conditions. The new concepts used in the suggested method are introduced. Re
We prove that the Sierpinski curve admits a homeomorphism with strong mixing properties. We also prove that the constructed example does not have Bowens specification property.