ﻻ يوجد ملخص باللغة العربية
It is known that Greens formula over finite fields gives rise to the comultiplications of Ringel-Hall algebras and quantum groups (seecite{Green}, also see cite{Lusztig}). In this paper, we deduce the projective version of Greens formula in a geometric way. Then following the method of Hubery in cite{Hubery2005}, we apply this formula to proving Caldero-Kellers multiplication formula for acyclic cluster algebras of arbitrary type.
We introduce the notion of a genus and its mass for vertex algebras. For lattice vertex algebras, their genera are the same as those of lattices, which plays an important role in the classification of lattices. We derive a formula relating the mass f
The objective of the present paper is to give a survey of recent progress on applications of the approaches of Ringel-Hall type algebras to quantum groups and cluster algebras via various forms of Greens formula. In this paper, three forms of Greens
We propose a definition of equivariant (with respect to an Iwahori subgroup) $K$-theory of the formal power series model $mathbf{Q}_{G}$ of semi-infinite flag manifold and prove the Pieri-Chevalley formula, which describes the product, in the $K$-the
We prove a Pieri-Chevalley formula for anti-dominant weights and also a Monk formula in the torus-equivariant $K$-group of the formal power series model of semi-infinite flag manifolds, both of which are described explicitly in terms of semi-infinite
The aim of the present paper is to introduce a generalized quantum cluster character, which assigns to each object V of a finitary Abelian category C over a finite field FF_q and any sequence ii of simple objects in C the element X_{V,ii} of the corr