ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical characterization of ultra-high diffraction efficiency gratings

823   0   0.0 ( 0 )
 نشر من قبل Oliver Burmeister
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the optical characterization of an ultra-high diffraction efficiency grating in 1st order Littrow configuration. The apparatus used was an optical cavity built from the grating under investigation and an additional high reflection mirror. Measurement of the cavity finesse provided precise information about the gratings diffraction efficiency and its optical loss. We measured a finesse of 1580 from which we deduced a diffraction efficiency of (99.635$pm$0.016)% and an overall optical loss due to scattering and absorption of just 0.185 %. Such high quality gratings, including the tool used for their characterization, might apply for future gravitational wave detectors. For example the demonstrated cavity itself presents an all-reflective, low-loss Fabry-Perot resonator that might replace conventional arm cavities in advanced high power Michelson interferometers.



قيم البحث

اقرأ أيضاً

All-reflective interferometer configurations have been proposed for the next generation of gravitational wave detectors, with diffractive elements replacing transmissive optics. However, an additional phase noise creates more stringent conditions for alignment stability. A framework for alignment stability with the use of diffractive elements was required using a Gaussian model. We successfully create such a framework involving modal decomposition to replicate small displacements of the beam (or grating) and show that the modal model does not contain the phase changes seen in an otherwise geometric planewave approach. The modal decomposition description is justified by verifying experimentally that the phase of a diffracted Gaussian beam is independent of the beam shape, achieved by comparing the phase change between a zero-order and first-order mode beam. To interpret our findings we employ a rigorous time-domain simulation to demonstrate that the phase changes resulting from a modal decomposition are correct, provided that the coordinate system which measures the phase is moved simultaneously with the effective beam displacement. This indeed corresponds to the phase change observed in the geometric planewave model. The change in the coordinate system does not instinctively occur within the analytical framework, and therefore requires either a manual change in the coordinate system or an addition of the geometric planewave phase factor.
The anomalous features in diffraction patterns first observed by Wood over a century ago have been the subject of many investigations, both experimental and theoretical. The sharp, narrow structures - and the large resonances with which they are some times associated - arise in numerous studies in optics and photonics. In this paper we present an analytical method to study diffracted fields of optically thin gratings that highlights the nonanalyticities associated with the anomalies. Using this approach we can immediately derive diffracted fields for any polarization in a compact notation. While our equations are approximate, they fully respect energy conservation in the electromagnetic field, and describe the large exchanges of energy between incident and diffracted fields that can arise even for thin gratings.
It is observed that a constant unit vector denoted by $mathbf I$ is needed to characterize a complete orthonormal set of vector diffraction-free beams. The previously found diffraction-free beams are shown to be included as special cases. The $mathbf I$-dependence of the longitudinal component of diffraction-free beams is also discussed.
With the growing demand for massive amounts of data processing transmission and storage it is becoming more challenging to optimize the trade off between high speed and energy consumption in current optoelectronic devices. Heterogeneous material inte gration into Silicon and Nitride photonics has demonstrated high speed potential but with millimeter to centimeter large footprints. The search for an electro optic modulator that combines high speed with energy efficiency and compactness to enable high component density on chip is yet ongoing. Here we demonstrate a 60 GHz fast (3dB roll off) micrometer compact and 4 fJ per bit efficient Graphene based modulator integrated on Silicon photonics platform. Two dual Graphene layers are capacitively biased into modulating the waveguide modes optical effective index via Pauli blocking mechanism. The electro optic response which is further enhanced by a vertical distributed Bragg reflector cavity thus reducing the drive voltage by about 40 times while preserving an adequate modulation depth (10 dB). Compact efficient and fast modulators enable high photonic chip density and performance with key applications in signal processing sensor platforms and analog and neuromorphic photonic processors.
Massively multiplexed spectroscopic stellar surveys such as MSE present enormous challenges in the spectrograph design. The combination of high multiplex, large telescope aperture, high resolution (R~40,000) and natural seeing implies that multiple s pectrographs with large beam sizes, large grating angles, and fast camera speeds are required, with high cost and risk. An attractive option to reduce the beam size is to use Bragg-type gratings at much higher angles than hitherto considered. As well as reducing the spectrograph size and cost, this also allows the possibility of very high efficiency due to a close match of s and p-polarization Bragg efficiency peaks. The grating itself could be a VPH grating, but Surface Relief (SR) gratings offer an increasingly attractive alternative, with higher maximum line density and better bandwidth. In either case, the grating needs to be immersed within large prisms to get the light to and from the grating at the required angles. We present grating designs and nominal spectrograph designs showing the efficiency gains and size reductions such gratings might allow for the MSE high resolution spectrograph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا