ترغب بنشر مسار تعليمي؟ اضغط هنا

Quenched lattice calculation of the B --> D l nu decay rate

502   0   0.0 ( 0 )
 نشر من قبل Nazario Tantalo
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters in the decay rate of the semileptonic decay B --> D l nu. Making use of the step scaling method (SSM), previously introduced to handle two scale problems in lattice QCD, and of flavour twisted boundary conditions we extract G(w) at finite momentum transfer and at the physical values of the heavy quark masses. Our results can be used in order to extract the CKM matrix element Vcb by the experimental decay rate without model dependent extrapolations.



قيم البحث

اقرأ أيضاً

We calculate, in the continuum limit of quenched lattice QCD, the form factor that enters the decay rate of the semileptonic decay B --> D* l nu. By using the step scaling method (SSM), previously introduced to handle two scale problems in lattice QC D, and by adopting flavor twisted boundary conditions we extract F(w) at finite momentum transfer and at the physical values of the heavy quark masses. Our results can be used in order to extract the CKM matrix element Vcb by the experimental decay rate without model dependent extrapolations. The value of Vcb agrees with the one obtained from the B --> D l nu channel and makes us confident that the quenched approximation well applies to these transitions.
We present the first lattice QCD calculation of the form factor for B-> D* l nu with three flavors of sea quarks. We use an improved staggered action for the light valence and sea quarks (the MILC configurations), and the Fermilab action for the heav y quarks. The form factor is computed at zero recoil using a new double ratio method that yields the form factor more directly than the previous Fermilab method. Other improvements over the previous calculation include the use of much lighter light quark masses, and the use of lattice (staggered) chiral perturbation theory in order to control the light quark discretization errors and chiral extrapolation. We obtain for the form factor, F_{B-> D*}(1)=0.921(13)(20), where the first error is statistical and the second is the sum of all systematic errors in quadrature. Applying a 0.7% electromagnetic correction and taking the latest PDG average for F_{B-> D*}(1)|V_cb| leads to |V_cb|=(38.7 +/- 0.9_exp +/- 1.0_theo) x 10^-3.
We present a lattice QCD calculation of $Bto pi l u$ semileptonic decay form factors in the small pion recoil momentum region. The calculation is performed on a quenched $16^3 times 48$ lattice at $beta=5.9$ with the NRQCD action including the full 1/M terms. The form factors $f_1(vcdot k_{pi})$ and $f_2(vcdot k_{pi})$ defined in the heavy quark effective theory for which the heavy quark scaling is manifest are adpoted, and we find that the 1/M correction to the scaling is small for the $B$ meson. The dependence of form factors on the light quark mass and on the recoil energy is found to be mild, and we use a global fit of the form factors at various quark masses and recoil energies to obtain model independent results for the physical differential decay rate. We find that the $B^*$ pole contribution dominates the form factor $f^+(q^2)$ for small pion recoil energy, and obtain the differential decay rate integrated over the kinematic region $q^2 >$ 18 GeV$^2$ to be $|V_{ub}|^2 times (1.18 pm 0.37 pm 0.08 pm 0.31)$ psec$^{-1}$, where the first error is statistical, the second is that from perturbative calculation, and the third is the systematic error from finite lattice spacing and the chiral extrapolation. We also discuss the systematic errors in the soft pion limit for $f^0(q^2_{max})$ in the present simulation.
66 - CLEO collaboration 2000
We determine the CKM matrix element |Vcb| using a sample of 3.33 million BBbar events in the CLEO detector at CESR. We determine the yield of reconstructed B --> D*+ l nu decays as a function of w = v_B . v_D*, and from this we obtain the differentia l decay rate dGamma/dw. By extrapolating the differential decay rate to w=1, the kinematic point at which the D* is at rest relative to the B, we extract the product |Vcb| F(1), where F(1) is the form factor at w=1 and is predicted accurately by theory. We find |Vcb| F(1) = 0.0424 +- 0.0018(stat.) +- 0.0019(syst.). We also integrate the differential decay rate over w to obtain B(B --> D*+ l nu) = (5.66 +- 0.29 +- 0.33)%. All results are preliminary.
We calculate, in the continuum limit of quenched lattice QCD, the matrix elements of the heavy-heavy vector current between heavy-light pseudoscalar meson states. We present the form factors for different values of the initial and final meson masses at finite momentum transfer. In particular, we calculate the non-perturbative correction to the differential decay rate of the process B --> D l nu including the case of a non-vanishing lepton mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا