ﻻ يوجد ملخص باللغة العربية
An all-electrical spin resonance effect in a GaAs few-electron double quantum dot is investigated experimentally and theoretically. The magnetic field dependence and absence of associated Rabi oscillations are consistent with a novel hyperfine mechanism. The resonant frequency is sensitive to the instantaneous hyperfine effective field, and the effect can be used to detect and create sizable nuclear polarizations. A device incorporating a micromagnet exhibits a magnetic field difference between dots, allowing electrons in either dot to be addressed selectively.
The ability to manipulate electron spins with voltage-dependent electric fields is key to the operation of quantum spintronics devices, such as spin-based semiconductor qubits. A natural approach to electrical spin control exploits the spin-orbit cou
We present an enhanced diffusion of nuclear spin polarization in fractional quantum Hall domain phases at $ u = 2/3$. Resistively-detected NMR mediated by electrically driven domain-wall motion is used as a probe of local nuclear polarization, manife
We present a detailed theory of induced persistent current produced by hyperfine interaction in mesoscopic rings based on a 2D-electron (hole) gas in the absence of external magnetic field. The persistent current emerges due to combined action of the
We perform a direct study of the magnitude of the anomalous splitting in the cyclotron resonance (CR) of a two-dimensional electron system (2DES) as a function of sample disorder. In a series of AlGaAs/GaAs quantum wells, identical except for a range
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics