ﻻ يوجد ملخص باللغة العربية
We report on measurements of dynamical suppression of inter-well tunneling of a Bose-Einstein condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions. Furthermore, we have verified that in general the strong shaking does not destroy the phase coherence of the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength as the control parameter.
We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the step-like time dependence of the band populations. Using different experimental protocols we were able
We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into an optical lattice. By controlling the initial conditions of our system we were able to observe resonant tunneling in the ground and the first two exc
By moving the pivot of a pendulum rapidly up and down one can create a stable position with the pendulums bob above the pivot rather than below it. This surprising and counterintuitive phenomenon is a widespread feature of driven systems and carries
We demonstrate coherent control of donor wavefunctions in phosphorous-doped silicon. Our experiments take advantage of a free electron laser to stimulate and observe photon echoes from, and Rabi oscillations between the ground and first excited state of P donors in Si.
We study the non-equilibrium dynamics of cold atoms held in an optical lattice potential. The expansion of an initially confined atom cloud occurs in two phases: an initial quadratic expansion followed by a ballistic behaviour at long times. Accounti