We consider the problem of forecasting the next (observable) state of an unknown ergodic dynamical system from a noisy observation of the present state. Our main result shows, for example, that support vector machines (SVMs) using Gaussian RBF kernels can learn the best forecaster from a sequence of noisy observations if (a) the unknown observational noise process is bounded and has a summable $alpha$-mixing rate and (b) the unknown ergodic dynamical system is defined by a Lipschitz continuous function on some compact subset of $mathbb{R}^d$ and has a summable decay of correlations for Lipschitz continuous functions. In order to prove this result we first establish a general consistency result for SVMs and all stochastic processes that satisfy a mixing notion that is substantially weaker than $alpha$-mixing.