ﻻ يوجد ملخص باللغة العربية
We generated configurations with the parametrized fixed-point Dirac operator D_{FP} on a (1.6 fm)^4 box at a lattice spacing a=0.13 fm. We compare the distributions of the three lowest k=1,2,3 eigenvalues in the nu= 0,1,2 topological sectors with that of the Random Matrix Theory predictions. The ratios of expectation values of the lowest eigenvalues and the cumulative eigenvalue distributions are studied for all combinations of k and nu. After including the finite size correction from one-loop chiral perturbation theory we obtained for the chiral condensate in the MSbar scheme Sigma(2GeV)^{1/3}=0.239(11) GeV, where the error is statistical only.
We compute the topological susceptibility $chi_t$ of 2+1-flavor lattice QCD with dynamical Mobius domain-wall fermions, whose residual mass is kept at 1 MeV or smaller. In our analysis, we focus on the fluctuation of the topological charge density in
We determine the topological susceptibility chi_t in the topologically-trivial sector generated by lattice simulations of N_f = 2+1 QCD with overlap Dirac fermion, on a 16^3 x 48 lattice with lattice spacing ~ 0.11 fm, for five sea quark masses m_q r
We study correlation functions of spatially separated static quark-antiquark pairs in (2+1)-flavor QCD in order to investigate onset and nature of color screening at high temperatures. We perform lattice calculations in a wide temperature range, $140
We compute the topological charge and its susceptibility in finite temperature (2+1)-flavor QCD on the lattice applying a gradient flow method. With the Iwasaki gauge action and nonperturbatively $O(a)$-improved Wilson quarks, we perform simulations
We investigate the finite size effect on the vector meson and the baryon sectors using a subset of the PACS10 configurations which are generated, keeping the space-time volumes over (10 fm$)^4$ in 2+1 flavor QCD at the physical point. Comparing the r