ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent Magnetization Precession in GaMnAs induced by Ultrafast Optical Excitation

240   0   0.0 ( 0 )
 نشر من قبل Jingbo Qi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use femtosecond optical pulses to induce, control and monitor magnetization precession in ferromagnetic Ga0.965Mn0.035As. At temperatures below ~40 K we observe coherent oscillations of the local Mn spins, triggered by an ultrafast photoinduced reorientation of the in-plane easy axis. The amplitude saturation of the oscillations above a certain pump intensity indicates that the easy axis remains unchanged above ~TC/2. We find that the observed magnetization precession damping (Gilbert damping) is strongly dependent on pump laser intensity, but largely independent on ambient temperature. We provide a physical interpretation of the observed light-induced collective Mn-spin relaxation and precession.



قيم البحث

اقرأ أيضاً

We report dynamics of the transient polar Kerr rotation (KR) and of the transient reflectivity induced by femtosecond laser pulses in ferromagnetic (Ga,Mn)As with no external magnetic field applied. It is shown that the measured KR signal consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in (Ga,Mn)As. The origin of the light-induced magnetization precession is discussed and the magnetization precession damping (Gilbert damping) is found to be strongly influenced by annealing of the sample.
We report on the photo-induced precession of the ferromagnetically coupled Mn spins in (Ga,Mn)As, which is observed even with no external magnetic field applied. We concentrate on various experimental aspects of the time-resolved magneto-optical Kerr effect (TR-MOKE) technique that can be used to clarify the origin of the detected signals. We show that the measured data typically consist of several different contributions, among which only the oscillatory signal is directly connected with the ferromagnetic order in the sample.
149 - Y. Hashimoto , H. Munekata 2008
We report dynamic control of magnetization precession by light alone. A ferromagnetic (Ga,Mn)As epilayer was used for experiments. Amplitude of precession was modulated to a large extent by tuning the time interval between two successive optical pump pulses which induced torques on magnetization through a non-thermal process. Nonlinear effect in precession motion was also discussed.
We show that the magnetization of a thin ferromagnetic (Ga,Mn)As layer can be modulated by picosecond acoustic pulses. In this approach a picosecond strain pulse injected into the structure induces a tilt of the magnetization vector M, followed by th e precession of M around its equilibrium orientation. This effect can be understood in terms of changes in magneto-crystalline anisotropy induced by the pulse. A model where only one anisotropy constant is affected by the strain pulse provides a good description of the observed time-dependent response.
We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic fiel d and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا