ﻻ يوجد ملخص باللغة العربية
The di-photon decay channel of the lightest Higgs boson is considerd as a probe to explore CP violation in the Minimal Supersymmetric Standard Model (MSSM). The scalar/pseudo-scalar mixing is considered along with CP violation entering through the Higgs-sfermion-sfermion couplings, with and without light sparticles. The impact of a light stop on the decay width and Branching Ratio (BR) is established through a detailed study of the amplitude of the process H1 --> gamma.gamma. The other sparticles have little influence even when they are light. With a suitable combination of other MSSM parameters, a light stop can change the BR by more than 50 % with a CP-violating phase phi_mu ~ 90 deg., while the change is almost nil with a heavy stop.
The Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation is studied with the help of the di-photon decay channel of the lightest neutral Higgs boson. Effects of CP violation, entering via the scalar/pseudo-scalar mixing at higher o
Physical Higgs particles in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation are CP mixed states. The decay of these Higgs particles can be analysed to study the CP properties of the MSSM. In the present work we consider th
The MSSM with explicit CP violation is studied through the di-photon decay channel of the lightest neutral Higgs boson. Through the leading one-loop order H1 --> gammar.gamma is affected by a large number of Higgs-sparticle couplings, which could be
The neutral Higgs sector of the minimal supersymmetric standard model (MSSM) in explicit CP violation scenario is investigated at the one-loop level. Within the context of the effective potential formalism, the masses of the neutral Higgs bosons are
We study the neutral Higgs sector of the minimal supersymmetric standard model (MSSM) with explicit CP violation at the one-loop level. We take into account the one-loop contributions by the top quark, the stop quarks, the bottom quark, the sbottom q