ﻻ يوجد ملخص باللغة العربية
We studied the circular polarization and angular dependences of the magneto-photoluminescence spectra of the free A-exciton 1S state in wurtzite ZnO at T = 5 K. The circular polarization properties of the spectra clearly indicate that the top valence band has Gamma_7 symmetry. The out-of-plane component of the magnetic field, which is parallel to the samples c axis, leads to linear Zeeman splitting of both the dipole-allowed Gamma_5 exciton state and the weakly allowed Gamma_1/Gamma_2 exciton states. The in-plane field, which is perpendicular to the c axis, increases the oscillator strength of the weak Gamma_1/Gamma_2 states by forming a mixed exciton state.
The circularly-polarized and angular-resolved magneto-photoluminescence spectroscopy was carried out to study the free A exciton 1S state in wurtzite ZnO at 5 K.
The uniaxial stress dependence of the band structure and the exciton-polariton transitions in wurtzite ZnO is thoroughly studied using modern first-principles calculations based on the HSE+G0W0 approach, k p modeling using the deformation potential f
Multilayer films of ZnO with Co were deposited on glass substrates then annealed in a vacuum. The magnetisation of the films increased with annealing but not the magnitude of the magneto-optical signals. The dielectric functions for the films were ca
We present results of magneto-optical measurements and theoretical analysis of shallow bound exciton complexes in bulk ZnO. Polarization and angular dependencies of magneto-photoluminescence spectra at 5 T suggest that the upper valence band has $Gam
Optical properties of ZnMnO layers grown at low temperature by Atomic Layer Deposition and Metalorganic Vapor Phase Epitaxy are discussed and compared to results obtained for ZnMnS samples. Present results suggest a double valence of Mn ions in ZnO l