ترغب بنشر مسار تعليمي؟ اضغط هنا

Corrections to the generalized vector dominance due to diffractive rho_3 production

193   0   0.0 ( 0 )
 نشر من قبل Igor Ivanov
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The idea of the vector dominance is still in use in various analyses of experimental data of photon-hadron reactions. It makes sense, therefore, to recast results of microscopic calculations of such reactions in this language. Here we present the diffractive DIS $rho_3$ production as a specific correction to the generalized vector dominance. We perform a coupled channel analysis of spin-orbital excitations in diffractive photoproduction and reiterate the point that rho_3 in diffractive DIS will be sensitive to a novel aspect of diffraction.



قيم البحث

اقرأ أيضاً

We consider the fidelity of the vector meson dominance (VMD) assumption as an instrument for relating the electromagnetic vector-meson production reaction $e + p to e^prime + V + p$ to the purely hadronic process $V + p to V+p$. Analyses of the photo n vacuum polarisation and the photon-quark vertex reveal that such a VMD Ansatz might be reasonable for light vector-mesons. However, when the vector-mesons are described by momentum-dependent bound-state amplitudes, VMD fails for heavy vector-mesons: it cannot be used reliably to estimate either a photon-to-vector-meson transition strength or the momentum dependence of those integrands that would arise in calculations of the different reaction amplitudes. Consequently, for processes involving heavy mesons, the veracity of both cross-section estimates and conclusions based on the VMD assumption should be reviewed, e.g., those relating to hidden-charm pentaquark production and the origin of the proton mass.
We report on a recent calculation of the complete NLO QCD and electroweak corrections to the process $pptomu^+ u_mu e^+ u_ejj$, i.e. like-sign charged vector-boson scattering. The computation is based on the complete amplitudes involving two differen t orders of the strong and electroweak coupling constants at tree level and three different orders at one-loop level. We find electroweak corrections of $-13%$ for the fiducial cross section that are an intrinsic feature of the vector-boson scattering process. For differential distributions, the corrections reach up to $-40%$ in the phase-space regions explored. At the NLO level a unique separation between vector-boson scattering and irreducible background processes is not possible any more at the level of Feynman diagrams.
The production of WWZ at the LHC is an important process to test the quartic gauge couplings of the Standard Model as well as an important background for new physics searches. A good theoretical understanding at next-to-leading order (NLO) is therefo re valuable. In this paper, we present the calculation of the NLO electroweak (EW) correction to this channel with on-shell gauge bosons in the final state. It is then combined with the NLO QCD correction to get the most up-to-date prediction. We study the impact of these corrections on the total cross section and some distributions. The NLO EW correction is small for the total cross section but becomes important in the high energy regime for the gauge boson transverse momentum distributions.
We have studied how parton distributions based on the inclusion of nonlinear scale evolution and constraints from HERA data affect charm production in $pp$ collisions at center-of-mass energies of 5.5, 8.8 and 14 TeV. We find that, while the resultin g enhancement can be substantial, it is very sensitive to the charm quark mass and the scale entering the parton densities and the strong coupling constant.
We present results for higher-order corrections to exclusive $mathrm{J}/psi$ production. This includes the first relativistic correction of order $v^2$ in quark velocity, and next-to-leading order corrections in $alpha_s$ for longitudinally polarized production. The relativistic corrections are found to be important for a good description of the HERA data, especially at small values of the photon virtuality. The next-to-leading order results for longitudinal production are evaluated numerically. We also demonstrate how the vector meson production provides complementary information to the structure functions for extracting the initial condition for the small-$x$ evolution of the dipole-proton scattering amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا