ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Aerosols at the Pierre Auger Observatory

305   0   0.0 ( 0 )
 نشر من قبل Segev BenZvi
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The air fluorescence detectors (FDs) of the Pierre Auger Observatory are vital for the determination of the air shower energy scale. To compensate for variations in atmospheric conditions that affect the energy measurement, the Observatory operates an array of monitoring instruments to record hourly atmospheric conditions across the detector site, an area exceeding 3,000 square km. This paper presents results from four instruments used to characterize the aerosol component of the atmosphere: the Central Laser Facility (CLF), which provides the FDs with calibrated laser shots; the scanning backscatter lidars, which operate at three FD sites; the Aerosol Phase Function monitors (APFs), which measure the aerosol scattering cross section at two FD locations; and the Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence of aerosol attenuation.



قيم البحث

اقرأ أيضاً

Air fluorescence detectors measure the energy of ultra-high energy cosmic rays by collecting fluorescence light emitted from nitrogen molecules along the extensive air shower cascade. To ensure a reliable energy determination, the light signal needs to be corrected for atmospheric effects, which not only attenuate the signal, but also produce a non-negligible background component due to scattered Cherenkov light and multiple-scattered light. The correction requires regular measurements of the aerosol attenuation length and the aerosol phase function, defined as the probability of light scattered in a given direction. At the Pierre Auger Observatory in Malargue, Argentina, the phase function is measured on an hourly basis using two Aerosol Phase Function (APF) light sources. These sources direct a UV light beam across the field of view of the fluorescence detectors; the phase function can be extracted from the image of the shots in the fluorescence detector cameras. This paper describes the design, current status, standard operation procedure, and performance of the APF system at the Pierre Auger Observatory.
The Central Laser Facility is located near the middle of the Pierre Auger Observatory in Argentina. It features a UV laser and optics that direct a beam of calibrated pulsed light into the sky. Light scattered from this beam produces tracks in the Au ger optical detectors which normally record nitrogen fluorescence tracks from cosmic ray air showers. The Central Laser Facility provides a test beam to investigate properties of the atmosphere and the fluorescence detectors. The laser can send light via optical fiber simultaneously to the nearest surface detector tank for hybrid timing analyses. We describe the facility and show some examples of its many uses.
The Pierre Auger Observatory is the worlds largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km$^2$ str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancem ents are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our X$_{max}$ data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.
The Pierre Auger Observatory, located on a vast, high plain in western Argentina, is the worlds largest cosmic ray observatory. The objectives of the Observatory are to probe the origin and characteristics of cosmic rays above $10^{17}$ eV and to stu dy the interactions of these, the most energetic particles observed in nature. The Auger design features an array of 1660 water-Cherenkov particle detector stations spread over 3000 km$^2$ overlooked by 24 air fluorescence telescopes. In addition, three high elevation fluorescence telescopes overlook a 23.5 km$^2$, 61-detector infilled array with 750 m spacing. The Observatory has been in successful operation since completion in 2008 and has recorded data from an exposure exceeding 40,000 km$^2$ sr yr. This paper describes the design and performance of the detectors, related subsystems and infrastructure that make up the Auger Observatory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا