ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of the X-ray Quasi-Periodic Oscillations and Identification of a Transient Ultraluminous X-Ray Source in M82

142   0   0.0 ( 0 )
 نشر من قبل Hua Feng
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The starburst galaxy M82 contains two ultraluminous X-ray sources (ULXs), CXOM82 J095550.2+694047 (=X41.4+60) and CXOM82 J095551.1+694045 (=X42.3+59), which are unresolved by XMM-Newton. We revisited the two XMM-Newton observations of M82 and analyzed the surface brightness profiles using the known Chandra source positions. We show that the quasi-periodic oscillations (QPOs) detected with XMM-Newton originate from X41.4+60, the brightest X-ray source in M82. Correcting for the contributions of the unresolved sources, the QPO at a frequency of 55.8+/-1.3 mHz on 2001 May 06 had a fractional rms amplitude of 32%, and the QPO at 112.9+/-1.3 mHz on 2004 April 21 had an amplitude of 21%. The QPO frequency may possibly be correlated with the source flux, similar to the type C QPOs in XTE 1550-564 and GRS 1915+105, but at luminosities two orders of magnitude higher. X42.3+59, the second brightest source in M82, displayed a strikingly high flux of 1.4E-11 ergs/cm^2/s in the 2-10 keV band on 2001 May 6. A seven-year light curve of X42.3+59 shows extreme variability over a factor of 1000; the source is not detected in several Chandra observations. This transient behavior suggests accretion from an unstable disk. If the companion star is massive, as might be expected in the young stellar environment, then the compact object would likely be an IMBH.



قيم البحث

اقرأ أيضاً

204 - Philip Kaaret , Hua Feng , 2008
We detected a major X-ray outburst from M82 with a duration of 79 days, an average flux of 5E-11 erg cm^-2 s^-1 in the 2-10 keV band, and strong variability. The X-ray spectrum remained hard throughout the outburst. We obtained a Chandra observation during the outburst that shows that the emission arises from the ultraluminous X-ray source X41.4+60. This source has an unabsorbed flux of (5.4 +/- 0.2)E-11 erg cm^-2 s^-1 in the 0.3-8 keV band, equivalent to an isotropic luminosity of 8.5E40 erg/s. The spectrum is adequately fitted with an absorbed power-law with a photon index of 1.55 +/- 0.05. This photon index is very similar to the value of 1.61 +/- 0.06 measured previously while the flux was (2.64 +/- 0.14)E-11 erg cm^-2 s^-1. Thus, the source appears to remain in the hard state even at the highest flux levels observed. The X-ray spectral and timing data available for X41.4+60 are consistent with the source being in a luminous hard state and a black hole mass in the range of one to a few thousand solar masses.
Most ultraluminous X-ray sources (ULXs) are believed to be stellar mass black holes or neutron stars accreting beyond the Eddington limit. Determining the nature of the compact object and the accretion mode from broadband spectroscopy is currently a challenge, but the observed timing properties provide insight into the compact object and details of the geometry and accretion processes. Here we report a timing analysis for an 800 ks XMM-Newton campaign on the supersoft ultraluminous X-ray source, NGC 247 ULX-1. Deep and frequent dips occur in the X-ray light curve, with the amplitude increasing with increasing energy band. Power spectra and coherence analysis reveals the dipping preferentially occurs on $sim 5$ ks and $sim 10$ ks timescales. The dips can be caused by either the occultation of the central X-ray source by an optically thick structure, such as warping of the accretion disc, or from obscuration by a wind launched from the accretion disc, or both. This behaviour supports the idea that supersoft ULXs are viewed close to edge-on to the accretion disc.
We report on the discovery of a new, transient ultraluminous X-ray source (ULX) in the galaxy NGC 7090. This new ULX, which we refer to as NGC 7090 ULX3, was discovered via monitoring with $Swift$ during 2019-20, and to date has exhibited a peak lumi nosity of $L_{rm{X}} sim 6 times 10^{39}$ erg s$^{-1}$. Archival searches show that, prior to its recent transition into the ULX regime, ULX3 appeared to exhibit a fairly stable luminosity of $L_{rm{X}} sim 10^{38}$ erg s$^{-1}$. Such strong long-timescale variability may be reminiscent of the small population of known ULX pulsars, although deep follow-up observations with $XMM$-$Newton$ and $NuSTAR$ do not reveal any robust X-ray pulsation signals. Pulsations similar to those seen from known ULX pulsars cannot be completely excluded, however, as the limit on the pulsed fraction of any signal that remains undetected in these data is $lesssim$20%. The broadband spectrum from these observations is well modelled with a simple thin disc model, consistent with sub-Eddington accretion, which may instead imply a moderately large black hole accretor ($M_{rm{BH}} sim 40 ~ M_{odot}$). Similarly, though, more complex models consistent with the super-Eddington spectra seen in other ULXs (and the known ULX pulsars) cannot be excluded given the limited signal-to-noise of the available broadband data. The nature of the accretor powering this new ULX therefore remains uncertain.
We report the discovery of the transient ultraluminous X-ray source (ULX) CXOU J122602.3+125951 (hereafter M86 tULX-1), located 352 (19 kpc) northwest of the centre of the giant elliptical galaxy M86 (NGC 4406) in the Virgo Cluster. The spectrum of M 86 tULX-1 can be fit by a power-law plus multicolour-disc model with a 1.0 [+0.8 -2.6] index and an 0.66 [+0.17 -0.11] keV inner-disc temperature, or by a power law with a 1.86 +/- 0.10 index. For an isotropically emitting source at the distance of M86, the luminosity based on the superposition of spectral models is (5 +/- 1) x 10^39 erg/s. Its relatively hard spectrum places M86 tULX-1 in a hitherto unpopulated region in the luminosity-disc temperature diagram, between other ULXs and the (sub-Eddington) black-hole X-ray binaries. We discovered M86 tULX-1 in an archival 148-ks 2013 July Chandra observation, and it was not detected in a 20-ks 2016 May Chandra observation, meaning it faded by a factor of at least 30 in three years. Based on our analysis of deep optical imaging of M86, it is probably not located in a globular cluster. It is the brightest ULX found in an old field environment unaffected by recent galaxy interaction. We conclude that M86 tULX-1 may be a stellar-mass black hole of ~30 - 100 M_Sun with a low-mass giant companion, or a transitional object in a state between the normal stellar-mass black holes and the ultraluminous state.
Ultra-Luminous X-ray sources are thought to be accreting black holes that might host Intermediate Mass Black Holes (IMBH), proposed to exist by theoretical studies, even though a firm detection (as a class) is still missing. The brightest ULX in M82 (M82 X-1) is probably one of the best candidates to host an IMBH. In this work we analyzed the data of the recent release of observations obtained from M82 X-1 taken by XMM-Newton. We performed a study of the timing and spectral properties of the source. We report on the detection of (46+-2) mHz Quasi-Periodic Oscillations (QPOs) in the power density spectra of two observations. A comparison of the frequency of these high-frequency QPOs with previous detections supports the 1:2:3 frequency distribution as suggested in other studies. We discuss the implications if the (46+-2) mHz QPO detected in M82 X-1 is the fundamental harmonic, in analogy with the High-Frequency QPOs observed in black hole binaries. For one of the observations we have detected for the first time a QPO at 8 mHz (albeit at a low significance), that coincides with a hardening of the spectrum. We suggest that the QPO is a milli-hertz QPO originating from the close-by transient ULX M82 X-2, with analogies to the Low-Frequency QPOs observed in black hole binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا