We report experimental and theoretical study of a rotating diode-pumped Nd-YAG ring laser with active beat note stabilization. Our experimental setup is described in the usual Maxwell-Bloch formalism. We analytically derive a stability condition and some frequency response characteristics for the solid-state ring laser gyroscope, illustrating the important role of mode coupling effects on the dynamics of such a device. Experimental data are presented and compared with the theory on the basis of realistic laser parameters, showing a very good agreement. Our results illustrate the duality between the very rich non linear dynamics of the diode-pumped solid-state ring laser (including chaotic behavior) and the possibility to obtain a very stable beat note, resulting in a potentially new kind of rotation sensor.