ﻻ يوجد ملخص باللغة العربية
We study the survival of super-currents in a system of impenetrable bosons subject to a quantum quench from its critical superfluid phase to an insulating phase. We show that the evolution of the current when the quench follows a Rosen-Zener profile is exactly solvable. This allows us to analyze a quench of arbitrary rate, from a sudden destruction of the superfluid to a slow opening of a gap. The decay and oscillations of the current are analytically derived, and studied numerically along with the momentum distribution after the quench. In the case of small supercurrent boosts $ u$, we find that the current surviving at long times is proportional to $ u^3$.
We study the survival of the current induced initially by applying a twist at the boundary of a chain of hard-core bosons (HCBs), subject to a periodic double $delta$-function kicks in the staggered on-site potential. We study the current flow and th
The low-lying eigenstates of a one-dimensional (1D) system of many impenetrable point bosons and one moving impurity particle with repulsive zero-range impurity-boson interaction are found for all values of the impurity-boson mass ratio and coupling
We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the step-like time dependence of the band populations. Using different experimental protocols we were able
We propose a feasible scheme to realize nonlinear Ramsey interferometry with a two-component Bose-Einstein condensate, where the nonlinearity arises from the interaction between coherent atoms. In our scheme, two Rosen-Zener pulses are separated by a
Magneto-transport of hard core bosons (HCB) is studied using an XXZ quantum spin model representation, appropriately gauged on the torus to allow for an external magnetic field. We find strong lattice effects near half filling. An effective quantum m