ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Role of the Barrier Layer in Magnetic Tunnel Junction Transport

116   0   0.0 ( 0 )
 نشر من قبل Brittany Nelson-Cheeseman
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic tunnel junctions with a ferrimagnetic barrier layer have been studied to understand the role of the barrier layer in the tunneling process - a factor that has been largely overlooked until recently. Epitaxial oxide junctions of highly spin polarized La0.7Sr0.3MnO3 and Fe3O4 electrodes with magnetic NiMn2O4 (NMO) insulating barrier layers provide a magnetic tunnel junction system in which we can probe the effect of the barrier by comparing junction behavior above and below the Curie temperature of the barrier layer. When the barrier is paramagnetic, the spin polarized transport is dominated by interface scattering and surface spin waves; however, when the barrier is ferrimagnetic, spin flip scattering due to spin waves within the NMO barrier dominates the transport.



قيم البحث

اقرأ أيضاً

We investigate the effects of electronic correlations in the full-Heusler Co$_2$MnSi, by combining a theoretical analysis of the spin-resolved density of states with tunneling-conductance spectroscopy measurements using Co$_2$MnSi as electrode. Both experimental and theoretical results confirm the existence of so-called non-quasiparticle states and their crucial contribution to the finite-temperature spin polarisation in this material.
We theoretically study the recently observed tunnel-barrier-enhanced dc voltage signals generated by magnetization precession in magnetic tunnel junctions. While the spin pumping is suppressed by the high tunneling impedance, two complimentary proces ses are predicted to result in a sizable voltage generation in ferromagnet (F)|insulator (I)|normal-metal (N) and F|I|F junctions, with one ferromagnet being resonantly excited. Magnetic dynamics in F|I|F systems induces a robust charge pumping, translating into voltage in open circuits. In addition, dynamics in a single ferromagnetic layer develops longitudinal spin accumulation inside the ferromagnet. A tunnel barrier then acts as a nonintrusive probe that converts the spin accumulation into a measurable voltage. Neither of the proposed mechanisms suffers from spin relaxation, which is typically fast on the scale of the exponentially slow tunneling rates. The longitudinal spin-accumulation buildup, however, is very sensitive to the phenomenological ingredients of the spin-relaxation picture.
A spin-tunnel-junction based on manganites, with La$_{1-x}$Sr$_x$MnO$_3$ (LSMO) as ferromagnetic metallic electrodes and the undoped parent compound LaMnO$_3$ (LMO) as insulating barrier, is here theoretically discussed using double exchange model Ha miltonians and numerical techniques. For an even number of LMO layers, the ground state is shown to have anti-parallel LSMO magnetic moments. This highly resistive, but fragile, state is easily destabilized by small magnetic fields, which orient the LSMO moments in the direction of the field. The magnetoresistance associated with this transition is very large, according to Monte Carlo and Density Matrix Renormalization Group studies. The influence of temperature, the case of an odd number of LMO layers, and the differences between LMO and SrTiO$_3$ as barriers are also addressed. General trends are discussed.
We present the electron tunneling transport and its magnetic field modulation of a superconducting (SC) Josephson junction with a barrier of single ferromagnetic (FM) Kitaev layer. We find that at H = 0, the Josephson current IS displays two peaks at K/{Delta} = 3.4 and 10, which stem from the resonant tunnelings between the SC gap boundaries and the spinon flat bands and between the SC gap edges and the spinon dispersive bands, respectively. With the increasing magnetic field, IS gradually decreases and abruptly drops to a platform at the critical magnetic field hc = g{mu}BHc/{Delta} = 0.03K/{Delta}, since the applied field suppresses the spinon density of states (DOS) once upon the Kitaev layer enters the polarized FM phase. These results pave a new way to measure the spinon or Majorana fermion DOS of the Kitaev and other spin liquid materials.
194 - J. Liu , Y. Gallais , M-A. Measson 2018
We used Raman scattering to study the lattice and magnetic excitations in the hexagonal HoMnO3 single crystals. The E2 phonon mode at 237 cm-1 is affected by the magnetic order. This mode is related to the displacement of Mn and O ions in a-b plane a nd modulates the Mn-O-Mn bond angles in a-b plane and the in-plane Mn-Mn superexchange interaction. The mode at 269 cm-1 associated to the displacement of the apical Ho3+ ions along the c direction presents an abrupt change of slope at TN showing that the role of the rare earth ions can not be neglected in the magnetic transition. We have identified magnon and crystal field excitations. The temperature dependence of the magnetic excitations has been compared to the Mn and Ho moment and indicates that the exchange interaction pattern between Mn and Ho atoms drives the uniaxial anisotropy gap above the Mn-spin-rotation transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا