ﻻ يوجد ملخص باللغة العربية
Context. G24.78+0.08 A1 is a 20 Msun star surrounded by a hypercompact (HC) HII region, driving a CO bipolar outflow, and located at the center of a massive rotating toroid undergoing infall towards the HC region. Recent water maser observations suggest that the HC region is expanding and accretion onto the star is halted. Aims. This study aims to confirm the expansion scenario proposed for the HC region on the basis of recent H2O maser observations. Methods. We carried out continuum VLA observations at 1.3cm and 7mm with the A array plus Pie Town configuration to map the HC region towards G24 A1. Results. The emission of the HC region has been resolved and shows a ring shape structure. The profiles of the emission obtained by taking slices at different angles passing through the barycenter of the HC region confirm the shell structure of the emission. The ratio between the inner and the outer radius of the shell, Ri/Ro, derived fitting the normalized brightness temperature profile passing through the peak of the 7mm emission, is 0.9, which indicates that the shell is thin. The deconvolved outer radius estimated from the fit is 590 AU. These results imply that the HC region in G24 A1 cannot be described in terms of a classical, homogeneous HII region but is instead an ionized shell. This gives support to the model of an expanding wind-driven, ionized shell suggested by the kinematics and distribution of the H2O masers associated with the HC region. According to this model, the HC region is expanding on very short times scales, 21-66 yr.
The study of hyper-compact (HC) or ultra-compact (UC) HII regions is fundamental to understanding the process of massive (> 8 M_sun) star formation. We employed Atacama Large Millimeter/submillimeter Array (ALMA) 1.4 mm Cycle 6 observations to invest
Over a timescale of a few years, an observed change in the optically thick radio continuum flux can indicate whether an unresolved H II region around a newly formed massive star is changing in size. In this Letter we report on a study of archival VLA
We present the results of high angular resolution millimeter observations of gas and dust toward G31.41+0.31 and G24.78+0.08, two high-mass star forming regions where four rotating massive toroids have been previously detected by Beltran et al. (2004
Context. This study is part of a large project to study the physics of accretion and molecular outflows towards a selected sample of high-mass star-forming regions that show evidence of infall and rotation from previous studies. Aims. We wish to make
We present spectroscopic observations for six emission-line objects projected onto the Virgo cluster. These sources have been selected from narrow band (Halpha+[NII]) images showing faint detectable continuum emission and EW>100 Angstrom. Five of the