ﻻ يوجد ملخص باللغة العربية
In this work, we first use Thompsons renormalization group method to treat QCD-vacuum behavior close to the regime of asymptotic freedom. QCD-vacuum behaves effectively like a paramagnetic system of a classical theory in the sense that virtual color charges (gluons) emerge in it as spin effect of a paramagnetic material when a magnetic field aligns their microscopic magnetic dipoles. Making a classical analogy with the paramagnetism of Landaus theory,we are able to introduce a kind of Landau effective action without temperature and phase transition for simply representing QCD-vacuum behavior at higher energies as magnetization of a paramagnetic material in the presence of a magnetic field H. This reasoning allows us to use Thompsons heuristic approach in order to extract an effective susceptibility ($chi>0$) of QCD-vacuum. It depends on logarithmic of energy scale u to investigate hadronic matter. Consequently,we are able to get an effective magnetic permeability ($mu>1$) of such a paramagnetic vacuum. As QCD-vacuum must obey Lorentz invariance,the attainment of $mu>1$ must simply require that the effective electrical permissivity is $epsilon<1$,in such a way that $muepsilon=1$ (c^2=1).This leads to the antiscreening effect, where the asymptotic freedom takes place. On the other hand, quarks cofinement, a subject which is not treatable by perturbative calculations, is worked by the present approach. We apply the method to study this subject in order to obtain the string constant, which is in agreement with the experiments.
We derive asymptotic freedom and the $SU(3)$ Yang-Mills $beta$-function using the renormalization group procedure for effective particles. In this procedure, the concept of effective particles of size $s$ is introduced. Effective particles in the Foc
In quantum chromodynamics with static quarks the confinement-deconfinement phase transition is connected to the spontaneous breaking of the global Z3 center symmetry. This symmetry is lost when one considers dynamical quarks. Owing to the fractional
An effective field theory model of the massive Yang-Mills theory is considered. Assuming that the renormalized coupling constants of non-renormalizable interactions are suppressed by a large scale parameter it is shown that in analogy to the non-abel
We provide strong evidence that the asymptotically free (1+1)-dimensional non-linear O(3) sigma model can be regularized using a quantum lattice Hamiltonian, referred to as the Heisenberg-comb, that acts on a Hilbert space with only two qubits per sp
We study four-dimensional gauge theories coupled to fermions in the fundamental and meson-like scalars. All requisite beta functions are provided for general gauge group and fermion representation. In the regime where asymptotic freedom is absent, we