ﻻ يوجد ملخص باللغة العربية
We classify all integrable 3-dimensional scalar discrete quasilinear equations Q=0 on an elementary cubic cell of the 3-dimensional lattice. An equation Q=0 is called integrable if it may be consistently imposed on all 3-dimensional elementary faces of the 4-dimensional lattice. Under the natural requirement of invariance of the equation under the action of the complete group of symmetries of the cube we prove that the only nontrivial (non-linearizable) integrable equation from this class is the well-known dBKP-system. (Version 2: A small correction in Table 1 (p.7) for n=2 has been made.) (Version 3: A few small corrections: one more reference added, the main statement stated more explicitly.)
We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on the square lattice. The fields are associated to the vertices and an equation Q(x_1,x_2,x_3,x_4)=0 relates four fields at one quad. Integrability of equations is und
We consider evolutionary equations of the form $u_t=F(u, w)$ where $w=D_x^{-1}D_yu$ is the nonlocality, and the right hand side $F$ is polynomial in the derivatives of $u$ and $w$. The recent paper cite{FMN} provides a complete list of integrable thi
We propose an integrable discrete model of one-dimensional soil water infiltration. This model is based on the continuum model by Broadbridge and White, which takes the form of nonlinear convection-diffusion equation with a nonlinear flux boundary co
Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDAs) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for
In the series of recent publications we have proposed a novel approach to the classification of integrable differential/difference equations in 3D based on the requirement that hydrodynamic reductions of the corresponding dispersionless limits are `i