ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of dissipation on the extraction of quantum states via repeated measurements

79   0   0.0 ( 0 )
 نشر من قبل Benedetto Daniele Militello
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum system put in interaction with another one that is repeatedly measured is subject to a non-unitary dynamics, through which it is possible to extract subspaces. This key idea has been exploited to propose schemes aimed at the generation of pure quantum states (purification). All such schemes have so far been considered in the ideal situations of isolated systems. In this paper, we analyze the influence of non-negligible interactions with environment during the extraction process, with the scope of investigating the possibility of purifying the state of a system in spite of the sources of dissipation. A general framework is presented and a paradigmatic example consisting of two interacting spins immersed in a bosonic bath is studied. The effectiveness of the purification scheme is discussed in terms of purity for different values of the relevant parameters and in connection with the bath temperature.



قيم البحث

اقرأ أيضاً

We investigate the effect of conditional null measurements on a quantum system and find a rich variety of behaviors. Specifically, quantum dynamics with a time independent $H$ in a finite dimensional Hilbert space are considered with repeated strong null measurements of a specified state. We discuss four generic behaviors that emerge in these monitored systems. The first arises in systems without symmetry, along with their associated degeneracies in the energy spectrum, and hence in the absence of dark states as well. In this case, a unique final state can be found which is determined by the largest eigenvalue of the survival operator, the non-unitary operator encoding both the unitary evolution between measurements and the measurement itself. For a three-level system, this is similar to the well known shelving effect. Secondly, for systems with built-in symmetry and correspondingly a degenerate energy spectrum, the null measurements dynamically select the degenerate energy levels, while the non-degenerate levels are effectively wiped out. Thirdly, in the absence of dark states, and for specific choices of parameters, two or more eigenvalues of the survival operator match in magnitude, and this leads to an oscillatory behavior controlled by the measurement rate and not solely by the energy levels. Finally, when the control parameters are tuned, such that the eigenvalues of the survival operator all coalesce to zero, one has exceptional points that corresponds to situations that violate the null measurement condition, making the conditional measurement process impossible.
Quantum steering---a strong correlation to be verified even when one party or its measuring device is fully untrusted---not only provides a profound insight into quantum physics but also offers a crucial basis for practical applications. For continuo us-variable (CV) systems, Gaussian states among others have been extensively studied, however, mostly confined to Gaussian measurements. While the fulfillment of Gaussian criterion is sufficient to detect CV steering, whether it is also necessary for Gaussian states is a question of fundamental importance in many contexts. This critically questions the validity of characterizations established only under Gaussian measurements like the quantification of steering and the monogamy relations. Here, we introduce a formalism based on local uncertainty relations of non-Gaussian measurements, which is shown to manifest quantum steering of some Gaussian states that Gaussian criterion fails to detect. To this aim, we look into Gaussian states of practical relevance, i.e. two-mode squeezed states under a lossy and an amplifying Gaussian channel. Our finding significantly modifies the characteristics of Gaussian-state steering so far established such as monogamy relations and one-way steering under Gaussian measurements, thus opening a new direction for critical studies beyond Gaussian regime.
Repeated observations of a quantum system interacting with another one can drive the latter toward a particular quantum state, irrespectively of its initial condition, because of an {em effective non-unitary evolution}. If the target state is a pure one, the degree of purity of the system approaches unity, even when the initial condition of the system is a mixed state. In this paper we study the behavior of the purity from the initial value to the final one, that is unity. Depending on the parameters, after a finite number of measurements, the purity exhibits oscillations, that brings about a lower purity than that of the initial state, which is a point to be taken care of in concrete applications.
We study the influence of acceleration on the twin-Fock state which is a class of specific multibody entangled quantum state and was already realized experimentally with high precision and sensitivity. We show that the multi-body quantum entanglement can be increased with the acceleration, consistent with the anti-Unruh effect in reference to the counterintuitive cooling previously pointed out for an accelerated detector coupled to the vacuum. In particular, this kind of entanglement increase can lead to the improvement of the phase sensitivity, which provides a way to test the anti-Unruh effect in the future experiments.
We study entropy production (EP) in processes involving repeated quantum measurements of finite quantum systems. Adopting a dynamical system approach, we develop a thermodynamic formalism for the EP and study fine aspects of irreversibility related t o the hypothesis testing of the arrow of time. Under a suitable chaoticity assumption, we establish a Large Deviation Principle and a Fluctuation Theorem for the EP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا