Modelling of the gas-phase oxidation of cyclohexane


الملخص بالإنكليزية

This paper presents a modeling study of the oxidation of cyclohexane from low to intermediate temperature (650-1050 K), including the negative temperature coefficient (NTC) zone. A detailed kinetic mechanism has been developed using computer-aided generation. This comprehensive low-temperature mechanism involves 513 species and 2446 reactions and includes two additions of cyclohexyl radicals to oxygen, as well as subsequent reactions. The rate constants of the reactions involving the formation of bicyclic species (isomerizations, formation of cyclic ethers) have been evaluated from literature data. This mechanism is able to satisfactorily reproduce experimental results obtained in a rapid-compression machine for temperatures ranging from 650 to 900 K and in a jet-stirred reactor from 750 to 1050 K. Flow-rate analyses have been performed at low and intermediate temperatures.

تحميل البحث