ﻻ يوجد ملخص باللغة العربية
Integrating areas of current research into undergraduate physics labs can be a difficult task. The location of the magnetopause is one problem that can be examined with no prior exposure to space physics. The magnetopause location can be viewed as a pressure balance between the dynamic pressure of the solar wind and the magnetic pressure of the magnetosphere. In this lab sophomore and junior students examine the magnetopause location using simulation results from BATS-R-US global MHD code run at NASAs Community Coordinated Modeling Center. Students also analyze data from several spacecraft to find magnetopause crossings. The students get reasonable agreement between their results and model predictions from this lab as well as exposure to the tools and techniques of space physics.
This White Paper highlights the role Primarily Undergraduate Institutions (PUIs) play within the astronomy profession, addressing issues related to employment, resources and support, research opportunities and productivity, and educational and societ
The terrestrial magnetopause is the boundary that shields the Earths magnetosphere on one side from the shocked solar wind and its embedded interplanetary magnetic field on the other side. In this paper, we show observations from two of the Time Hist
While pressure balance can predict how far the magnetopause will move in response to an upstream pressure change, it cannot determine how fast the transient reponse will be. Using Time History of Events and Macroscale Interactions during Substorms (T
We consider the one-dimensional equilibrium problem of a shear-flow boundary layer within an extended Hall-MHD (eHMHD) model of plasma that retains first-order finite Larmor radius (FLR) corrections to the ion dynamics. We provide a generalized versi
We analyze the development and influence of turbulence in three-dimensional particle-in-cell simulations of guide-field magnetic reconnection at the magnetopause with parameters based on observations of an electron diffusion region by the Magnetosphe