Motivated by applications to black hole physics and duality, we study the effect of higher derivative corrections on the dimensional reduction of four-dimensional Einstein, Einstein Liouville and Einstein-Maxwell gravity to one direction, as appropriate for stationary, spherically symmetric solutions. We construct a field redefinition scheme such that the one-dimensional Lagrangian is corrected only by powers of first derivatives of the fields, eliminating spurious modes and providing a suitable starting point for quantization. We show that the Ehlers symmetry, broken by the leading $R^2$ corrections in Einstein-Liouville gravity, can be restored by including contributions of Taub-NUT instantons. Finally, we give a preliminary discussion of the duality between higher-derivative F-term corrections on the vector and hypermultiplet branches in N=2 supergravity in four dimensions.