ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal Walking Technicolor: Set Up for Collider Physics

133   0   0.0 ( 0 )
 نشر من قبل Sannino Francesco
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor theory not at odds with precision data.



قيم البحث

اقرأ أيضاً

216 - Ed Bennett , Biagio Lucini 2012
We perform a lattice study of the topological susceptibility and instanton size distribution of the $su{2}$ gauge theory with two adjoint Dirac fermions (also known as Minimal Walking Technicolor), which is known to be in the conformal window. In the theory deformed with a small mass term, by drawing a comparison with the pure gauge theory, we find that topological observables are decoupled from the fermion dynamics. This provides further evidence for the infrared conformality of the theory. A study of the instanton size distribution shows that this quantity can be used to detect the onset of finite size effects.
We study gravitational waves from the first-order electroweak phase transition in the $SU(N_c)$ gauge theory with $N_f/N_cgg 1$ (large $N_f$ QCD) as a candidate for the walking technicolor, which is modeled by the $U(N_f)times U(N_f)$ linear sigma mo del with classical scale symmetry (without mass term), particularly for $N_f=8$ (one-family model). This model exhibits spontaneous breaking of the scale symmetry as well as the $U(N_f)times U(N_f)$ radiatively through the Coleman-Weinberg mechanism $grave{a}$ la Gildener-Weinberg, thus giving rise to a light pseudo dilaton (techni-dilaton) to be identified with the 125 GeV Higgs. This model possess a strong first-order electroweak phase transition due to the resultant Coleman-Weinberg type potential. We estimate the bubble nucleation that exhibits an ultra supercooling and then the signal for a stochastic gravitational wave produced via the strong first-order electroweak phase transition. We show that the amplitude can be reached to the expected sensitivities of the LISA.
329 - Kenneth Lane 2002
We discuss the phenomenology of the lightest SU(3)_C singlet and non-singlet technihadrons in the Straw Man Model of low-scale technicolor (TCSM). The technihadrons are assumed to be those arising in topcolor--assisted technicolor models in which top color is broken by technifermion condensates. We improve upon the description of the color--singlet sector presented in our earlier paper introducing the TCSM (hep-ph/9903369). These improvements are most important for subprocess energies well below the masses of the technirho and techniomega, and, therefore, apply especially to e+e- colliders such as LEP and a low--energy linear collider. In the color--octet sector, we consider mixing of the gluon, the coloron V_8 from topcolor breaking, and four isosinglet color--octet technirho mesons. We assume, as expected in walking technicolor, that these technirhos decay into qbar-q, gg, and g-technipion final states, but not into technipion pairs. All the TCSM production and decay processes discussed here are included in the event generator Pythia. We present several simulations appropriate for the Tevatron Collider, and suggest benchmark model lines for further experimental investigation.
We review the collider phenomenology of neutrino physics and the synergetic aspects at energy, intensity and cosmic frontiers to test the new physics behind the neutrino mass mechanism. In particular, we focus on seesaw models within the minimal setu p as well as with extended gauge and/or Higgs sectors, and on supersymmetric neutrino mass models with seesaw mechanism and with $R$-parity violation. In the simplest Type-I seesaw scenario with sterile neutrinos, we summarize and update the current experimental constraints on the sterile neutrino mass and its mixing with the active neutrinos. We also discuss the future experimental prospects of testing the seesaw mechanism at colliders and in related low-energy searches for rare processes, such as lepton flavor violation and neutrinoless double beta decay. The implications of the discovery of lepton number violation at the LHC for leptogenesis are also studied.
In this paper we calculate the production of a charged top pion in association with a W boson via gg fusion at the CERN Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that, the total cross section of pp --> g g --> W^{pm}pi_t^{mp}, is several dozen femtobarns with reasonable values of the parameters, and the total cross section of pp --> W^{pm}pi_t^{mp} can reach a few hundred femtobarns when we consider the sum of the contributions of these two parton subprocesses gg --> W^{pm}pi_t^{mp} and bbar{b} --> W^{pm}pi_t^{mp}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا