ﻻ يوجد ملخص باللغة العربية
The supersymmetrical approach is used to analyse a class of two-dimensional quantum systems with periodic potentials. In particular, the method of SUSY-separation of variables allowed us to find a part of the energy spectra and the corresponding wave functions (partial solvability) for several models. These models are not amenable to conventional separation of variables, and they can be considered as two-dimensional generalizations of Lame, associated Lame, and trigonometric Razavy potentials. All these models have the symmetry operators of fourth order in momenta, and one of them (the Lame potential) obeys the property of self-isospectrality.
The AKLT spin chain is the prototypical example of a frustration-free quantum spin system with a spectral gap above its ground state. Affleck, Kennedy, Lieb, and Tasaki also conjectured that the two-dimensional version of their model on the hexagonal
The bootstrap determination of the geometrical correlation functions in the two-dimensional Potts model proposed in a paper [arXiv:1607.07224] was later shown in [arXiv:1809.02191] to be incorrect, the actual spectrum of the model being considerably
We consider the Dirac equation on periodic networks (quantum graphs). The self-adjoint quasi periodic boundary conditions are derived. The secular equation allowing us to find the energy spectrum of the Dirac particles on periodic quantum graphs is o
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide.
Quantum sensors based on nitrogen-vacancy centers in diamond have emerged as a promising detection modality for nuclear magnetic resonance (NMR) spectroscopy owing to their micron-scale detection volume and non-inductive based detection. A remaining