ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution mid-infrared spectroscopy of ultraluminous infrared galaxies

128   0   0.0 ( 0 )
 نشر من قبل Duncan Farrah
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Farrah




اسأل ChatGPT حول البحث

(Abridged) We present R~600, 10-37um spectra of 53 ULIRGs at z<0.32, taken using the IRS on board Spitzer. All of the spectra show fine structure emission lines of Ne, O, S, Si and Ar, as well as molecular Hydrogen lines. Some ULIRGs also show emission lines of Cl, Fe, P, and atomic Hydrogen, and/or absorption features from C_2H_2, HCN, and OH. We employ diagnostics based on the fine-structure lines, as well as the EWs and luminosities of PAH features and the strength of the 9.7um silicate absorption feature (S_sil), to explore the power source behind the infrared emission in ULIRGs. We show that the IR emission from the majority of ULIRGs is powered mostly by star formation, with only ~20% of ULIRGs hosting an AGN with a comparable or greater IR luminosity than the starburst. The detection of the 14.32um [NeV] line in just under half the sample however implies that an AGN contributes significantly to the mid-IR flux in ~42% of ULIRGs. The emission line ratios, luminosities and PAH EWs are consistent with the starbursts and AGN in ULIRGs being more extincted, and for the starbursts more compac



قيم البحث

اقرأ أيضاً

We broadly discuss mid-infrared spectroscopy and detail our new high spectral resolution instrument, the Texas Echelon-cross-Echelle Spectrograph (TEXES).
We present diffraction-limited (FWHM ~ 0.3arcsec) Gemini/T-ReCS mid-infrared (MIR: N-band or narrow-band at 8.7micron) imaging of four Luminous Infrared Galaxies (LIRGs) drawn from a representative local sample. The MIR emission in the central few kp c is strikingly similar to that traced by Pa-alpha, and generally consists of bright nuclear emission and several compact circumnuclear and/or extranuclear HII regions. The central MIR emission is dominated by these powerful HII regions, consistent with the majority of AGN in this local sample of LIRGs contributing a minor part of the MIR emission. The luminous circumnuclear HII regions detected in LIRGs follow the extrapolation of the 8micron vs. Pa-alpha relation found for M51 HII knots. The integrated central 3-7kpc of galaxies, however, present elevated 8micron/Pa-alpha ratios with respect to individual HII regions, similar to the integrated values for star-forming galaxies. Our results show that the diffuse 8micron emission, not directly related to the ionizing stellar population, can be as luminous as that from the resolved HII regions. Therefore, calibrations of the star formation rate for distant galaxies should be based on the integrated 8micron emission of nearby galaxies, not that of the HII regions alone.
110 - Carol Lonsdale 2006
Ever since their discovery in the 1970s, UltraLuminous InfraRed Galaxies (ULIRGs; classically Lir>10^12Lsun) have fascinated astronomers with their immense luminosities, and frustrated them due to their singularly opaque nature, almost in equal measu re. Over the last decade, however, comprehensive observations from the X-ray through to the radio have produced a consensus picture of local ULIRGs, showing that they are mergers between gas rich galaxies, where the interaction triggers some combination of dust-enshrouded starburst and AGN activity, with the starburst usually dominating. Very recent results have thrown ULIRGs even further to the fore. Originally they were thought of as little more than a local oddity, but the latest IR surveys have shown that ULIRGs are vastly more numerous at high redshift, and tantalizing suggestions of physical differences between high and low redshift ULIRGs hint at differences in their formation modes and local environment. In this review we look at recent progress on understanding the physics and evolution of local ULIRGs, the contribution of high redshift ULIRGs to the cosmic infrared background and the global history of star formation, and the role of ULIRGs as diagnostics of the formation of massive galaxies and large-scale structures.
129 - Sean Tokunaga 2016
We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers may be measurable. The molecules are produced with a rotational temperature of approximately 6~K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2~$mu$m antisymmetric Re=O stretching mode of MTO with a resolution of 8~MHz and a frequency accuracy of 30~MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state.
We present low resolution near-infrared spectroscopy of an unbiased sample of 24 ultraluminous infrared galaxies (ULIRGs), selected from samples previously observed spectroscopically in the mid-infrared with the Infrared Space Observatory (ISO). Qual itatively, the near-infrared spectra resemble those of starbursts. Only in one ULIRG, IRAS 04114-5117E, do we find spectroscopic evidence for AGN activity. The spectroscopic classification in the near-infrared is in very good agreement with the mid-infrared one. For a subset of our sample for which extinction corrections can be derived from Pa-alpha and Br-gamma, we find rather high Pa-alpha luminosities, in accordance with the powering source of these galaxies being star formation.[Fe] emission is strong in ULIRGs and may be linked to starburst and superwind activity. Additionally, our sample includes two unusual objects. The first, IRAS F00183-7111, exhibits extreme [Fe] emission and the second, IRAS F23578-5307, is according to our knowledge one of the most luminous infrared galaxies in H2 rotation-vibration emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا