ﻻ يوجد ملخص باللغة العربية
We present a simple heuristic model to demonstrate how feedback related to the galaxy formation process can result in a scale-dependent bias of mass versus light, even on very large scales. The model invokes the idea that galaxies form initially in locations determined by the local density field, but the subsequent formation of galaxies is also influenced by the presence of nearby galaxies that have already formed. The form of bias that results possesses some features that are usually described in terms of stochastic effects, but our model is entirely deterministic once the density field is specified. Features in the large-scale galaxy power spectrum (such as wiggles that might in an extreme case mimic the effect of baryons on the primordial transfer function) could, at least in principle, arise from spatial modulations of the galaxy formation process that arise naturally in our model. We also show how this fully deterministic model gives rise to apparently stochasticity in the galaxy distribution.
We forecast the future constraints on scale-dependent parametrizations of galaxy bias and their impact on the estimate of cosmological parameters from the power spectrum of galaxies measured in a spectroscopic redshift survey. For the latter we assum
We present a mitigation strategy to reduce the impact of non-linear galaxy bias on the joint `$3 times 2 $pt cosmological analysis of weak lensing and galaxy surveys. The $Psi$-statistics that we adopt are based on Complete Orthogonal Sets of E/B Int
Baryonic acoustic oscillations (BAOs) modulate the density ratio of baryons to dark matter across large regions of the Universe. We show that the associated variation in the mass-to-light ratio of galaxies should generate an oscillatory, scale-depend
Primordial non-Gaussianity introduces a scale-dependent variation in the clustering of density peaks corresponding to rare objects. This variation, parametrized by the bias, is investigated on scales where a linear perturbation theory is sufficiently
We measure the large-scale bias of dark matter halos in simulations with non-Gaussian initial conditions of the local type, and compare this bias to the response of the mass function to a change in the primordial amplitude of fluctuations. The two ar